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ABSTRACT 

Ground combat vehicles are susceptible to aerial threats. During maneuver, the formation 

may be in unfamiliar territory and without established local air defense support. Mobile 

air defense may be required to increase the survivability of ground combat vehicles 

during movement. Depending on the air capability of the adversary and operation area, 

the required architecture of mobile air defense systems may vary. 

There is an identified capability gap for mobile air defense in the U.S. Armed 

Forces in operating environments with terrain. Using a systems engineering approach, 

this study looks into the stakeholder needs and functions required to fulfill this capability 

gap. In defining the physical architecture, there are many factors that could affect the 

design of a mobile air defense system. Physically addressing all permutations of the 

attributes would be onerous and inefficient. For an identified concept of operations, a 

design of experiment was used to expedite the assessment process by identifying 

significant design factors. 

The objective is to provide program managers with a mobile air defense system 

assessment framework. The framework currently utilizes indicative responses in lieu of 

inaccessible combat data. When used in conjunction with real data, the framework would 

help make the acquisition process more efficient. 
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EXECUTIVE SUMMARY 

A review of Joint Capability Areas reveals the capability need for maneuver forces 

remain relevant. Ground combat vehicles are susceptible to aerial threats. During 

maneuver, a formation may be in unfamiliar territory, and without established local air 

defense support. Based on current systems in the U.S. Armed Forces, there is an 

identified capability gap for mobile air defense especially in an operating environment 

with terrain. Acquisition of a mobile air defense system may be required to increase the 

survivability of ground combat vehicles during movement in an operating environment 

with terrain. Acquisition of a weapon system is a complex and iterative task. This study 

adopts a systems engineering approach in developing an assessment framework to aid 

program managers in the acquisition of a mobile air defense system. 

The systems engineering process is a systematic and holistic method of generating 

the required functions and components to implement the capability needs and operational 

activities needed by stakeholders. The method used in this systems engineering 

acquisition process is to first, define the problem; second, conduct stakeholder analysis; 

third, conduct operational analysis; fourth, conduct functional analysis; and fifth, 

generate the physical architecture. The result of this method that iterates between these 

five tasks is an interlinked characterization of the system concept for delivery as 

expressed through a concept of operation. 

The decomposition methodology was used for operational and functional analysis, 

which enabled complex problems to be broken down into simpler and more manageable 

problems. Operational and functional analysis was conducted at a system-of-systems 

level that enabled better appreciation of complementary functions between the ground 

combat vehicles and mobile air defense systems. A model-based systems engineering tool 

(Vitech Core 9) was used to generate an interlinked framework that allows for iterative 

work while maintaining track of follow-on changes. Subsequently, measures were 

defined to ensure overall likelihood of mission success and functional performances. The 

overall measure of effectiveness was defined as neutralization of adversary surface-to-air 

missiles; the overall measure of merit was defined as the survivability of maneuver 
 xv 



formation. For each identified function and process, measures of performance and merits 

were identified respectively. These measures would form the main inputs to the next 

stage of the assessment framework. 

Owing to the multiple factors that may affect the design of the mobile air defense 

system, design of experiment was used to expedite the assessment process. Other than 

measures of merit and performance generated from the system engineering process, input 

signal factors to the design of experiment also included factors related to combat 

survivability. While combat survivability (encompassing the 12 concepts for reducing 

susceptibility and vulnerability) is well established for aircraft platforms, combat 

survivability design consideration for land platforms currently utilizes a few select 

susceptibility or vulnerability reduction concepts. Inclusion of combat survivability 

within the factors that determine the design of the mobile air defense system ensures 

combat survivability is considered early in the design phase, thus preventing the need to 

conduct costly changes to incorporate combat survivability enhancements later on. The 

requisite components for a design of experiment comprise signal factors, noise factors, 

and responses. In order to determine noise factors, scenarios representative of typical 

military missions were generated to enable the distillation of noise factors that although 

uncontrollable, affect the performance of the mobile air defense system. The 

consideration of noise factors in the design of experiment allowed for a more 

representative performance assessment. In lieu of combat data, the assigning of responses 

was based on a “better- or worse-off” comparison between factors. The design of 

experiment was conducted using JMP 11 Pro statistical analysis software. 

The results of the design of experiment are indicative of real world trends. Based 

on the design of experiment results, having short detection and engagement ranges is 

most critical for mobile air defense systems. In addition, long detection range could 

enhance performance. The exposure time of the maneuver unit formation to threats was 

also identified to be a high significance factor. This result is supported by real world 

trends in that most existing mobile air defense systems have a fire-and-forget system to 

minimize exposure time. 

 xvi 



A systematic and interlinked assessment framework for the acquisition of a 

mobile air defense system has been developed. The use of model-based systems 

engineering tool and statistical analysis software is envisaged to expedite the assessment 

process significantly. Further validation of the framework with the use of combat data 

would enhance the accuracy and precision of the assessment results. 
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I. INTRODUCTION 

Ground combat vehicles are susceptible to aerial threats. The formation may be in 

unfamiliar territory and without established local air defense support during maneuver. 

Mobile air defense may be required to increase the survivability of ground combat 

vehicles during movement. Depending on the present threat and operation area, the 

required architecture of mobile air defense systems may vary. 

The acquisition of a mobile air defense system or any weapon system is seldom a 

straightforward decision. Decision-makers may be pushing for what is wanted versus 

what is needed. What is wanted could be the latest trend, incorporated with new-edge 

technology, and a fierce-looking system. What is needed could actually be a simple, 

effective, and plain-looking system that utilizes mature technology. In addition, it is not 

uncommon for people to have a “bigger the better,” “further the better,” or “more 

expensive the better” mentality. However, the key point is to have a system that fulfills 

capability needs in response to the identified threats in the envisaged scenario. Similarly, 

the Department of Defense (DOD; 2010) defines capability as the ability to achieve a 

desired effect under specified (performance) standards and conditions through 

combinations of ways and means (activities and resources) to perform a set of activities. 

 The process of assessing what is needed may be daunting for the less experienced 

program managers. In addition, managers with different backgrounds may have a 

different appreciation of mobile air defense. Since the end of the Korean War, there has 

been less emphasis on the needs of mobile air defense. This situation is not helped by the 

air superiority of the United States in recent conflicts. Program managers with in-depth 

experience relating to mobile air defense may not be readily available. In view of the 

potential socio-political influences, the use of a systematic process helps to reduce 

human-related bias and provide a true representation of the capability need. 

Consequently, the aim of this thesis is to provide a systematic and holistic 

framework that could be used to aid the program manager in the decision-making process 

concerning which type of mobile air defense system is needed. Since such assessments 
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often require significant effort due to multiple variables involved, this framework also 

seeks to enhance the efficiency of the decision process by incorporating the use of models 

and statistical tools. 

A. METHODOLOGY 

Using a systems engineering approach, this study begins by looking into the 

capability needs for maneuver forces. These needs are matched to Joint Capability Areas 

(JCAs) defined by the DOD. Stakeholder analysis is conducted to establish the needs and 

concerns of stakeholders. Stakeholder analysis also helps to shape the measures used to 

evaluate the suitability of alternative designs later in the program. The next step is to 

define the operational concept, commonly communicated via DOD Architecture 

Framework (DODAF) operational view one (OV-1). Subsequently, operational analysis 

is conducted to determine the activities required to achieve the mission objective. 

Operational activities are commonly shown via DODAF OV-5b. The operational 

activities allow for the derivation of required functions to implement the operational 

activities. To ensure all operational activities are addressed, a mapping of operational 

activities to functions is conducted. Functional analysis results in a functional hierarchy 

allowing the conduct of component analysis. Functions are performed by components, 

thus a function to component mapping is conducted to ensure all functions are addressed. 

In defining the physical architecture, due to the many possible design parameters for a 

mobile air defense (MAD) system, a design of experiment (DOE) approach is used to 

identify significant factors of a MAD system for the defined operational concept. The 

results of the DOE aid the program manager in deciding on the most suitable MAD 

system design. The methodology for this thesis is summarized in Figure 1. 
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Figure 1.  Thesis Methodology 

B. THESIS ORGANIZATION 

Chapter II provides the historical background of maneuver forces—their 

evolution and relevance in today’s military operations. The recent trends with regard to 

threats faced by maneuver formations are also addressed. Subsequently, the concept of 

active and layered air defense is discussed. The recent acquisition history of mobile air 

defense systems in the United States and mobile air defense experience in recent conflicts 

are recounted in order to establish the capability need for mobile air defense. A brief 

categorization of current mobile air defense systems in the world is presented to provide 

the reader a sense of possible physical architectures for mobile air defense systems. 

Chapter III describes the systems engineering process used with regard to the 

acquisition of a mobile air defense system. Capability needs are first established with 

reference to JCAs followed by stakeholder needs. From the identified capability needs 

and concept of operations, operational activities needed to achieve the capability needs 

are determined. Operational activities enable the identification of functions needed to 

implement the operational activities and subsequently the components to perform the 

requisite functions. The determination of measures of effectiveness, merit and 

performances is also discussed. 

Chapter IV describes the use of DOE to facilitate the analysis of different factors 

that may affect the design of the MAD system. The rationale for the selection of 

experiment design, signal factors, noise factors, and experiment responses are discussed 

accordingly. Taguchi’s orthogonal array, which allows lesser runs to be analyzed without 
 3 



sacrificing significant resolution in the results, was used. The signal factors and the 

associated levels are discussed. Scenarios were built in order to determine noise factors. 

In lieu of the lack of combat data, significance for each run was assigned as responses. 

The DOE was conducted using JMP Pro 11 statistical software. 

Chapter V presents the results of the DOE. Significant factors based on the results 

of the design of experiments are highlighted. Chapter VI presents the insights from the 

DOE results, concluding remarks, and potential areas of future research. 
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II. LITERATURE REVIEW 

This chapter provides background information upon which this thesis is built 

around. The following section will cover the history, evolution, and relevance of 

maneuver capability to modern warfare. Subsequently, threats to maneuver forces and 

background information on active and layered air defense in general will be discussed. 

The need for mobile air defense capability for the U.S. Armed Forces in relation to the 

history of mobile air defense in United States will also be addressed. A review of current 

mobile air defense systems in the world is included to provide a sense of possible 

physical architectures for mobile air defense. 

A. MANEUVER CAPABILITY 

This section describes the evolving role of maneuver forces. It also establishes the 

relevance of maneuver capability in modern times. 

1. Symmetric and Asymmetric Warfare 

In the most original and symmetrical type of warfare, opposing forces face each 

other with similar types of forces (Smith 2003). In asymmetric warfare, tactics different 

from what is normally expected are used. Bennett, Twomey, and Treverton (1999) refer 

to asymmetric warfare as strategies that are not considered standard or do not directly 

combat the strengths of the adversary. In ancient times, maneuver tactics were considered 

a form of surprise attack. When the adversary was expecting or currently fighting a 

frontal assault, forces attacking from other directions (e.g., flanks or rear) could cause 

surprise and confusion, which increased the chances of routing the adversary. Such 

tactics are recorded in Sun Tzu’s Art of War (Sun and Giles 1910). In the Battle of Little 

Bighorn in 1876, General Custer split his forces and attempted to attack a village in three 

different directions so as to utilize the element of surprise and maximize damage (Baker 

2002). Consequently, maneuver tactics could be viewed as asymmetric warfare. 

In modern times, maneuver tactics have since become something that could be 

expected. The U.S. Army History and Role of Armor (Department of the Army 1974) 
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states the role and missions of armor in offensive situations. The missions include (1) 

deep penetration and wide envelopment, (2) exploitation, (3) defense, (4) destruction of 

enemy formations, (5) reconnaissance/security, (6) close support of infantry, and (7) 

economy of force. The element of maneuver is especially prominent in economy of force, 

where a commander maneuvers armored forces to another area, or via an alternative 

route, to strike a decisive blow to adversary forces (Department of the Army 1974). 

From a holistic perspective, maneuver warfare could now be considered to be a 

mixture of symmetric and asymmetric warfare, leaning closer towards symmetric warfare 

(Bennett, Twomey, and Treverton 1998). 

2. Relevance of Maneuver Capability 

The capability to maneuver remains relevant in modern times. During the Yom 

Kippur War, the late Ariel Sharon demonstrated the use of maneuver warfare when the 

Israeli armored divisions crossed the Suez Canal and exploited the gap between two 

Egyptian armies to establish a bridgehead (Zabecki 2008). This maneuver resulted in 

arguably the most decisive turning point of the war. The protection and firepower of 

ground combat vehicles (GCVs) made them most suitable for such operations. The term 

GCV is used generically in this thesis in reference to ground vehicles used in maneuver 

warfare that may include main battle tanks and infantry fighting vehicles. During 

Operation Iraqi Freedom, the speed and firepower of the U.S. GCVs were exploited. The 

1st Marine Expeditionary Unit covered a total of 808 kilometers in 17 days (Kennedy 

2006), possibly the deepest and furthest penetration for a maneuver force in modern 

military history. 

Maneuver forces are able to fulfill a variety of missions in both offensive and 

defensive scenarios. The DOD recognizes the utility of such a capability and has included 

maneuver capability as part of the JCAs. JCAs are described by the Deputy Secretary of 

Defense in the Joint Capability Area Management Plan (DOD 2010a) as the capability 

management framework of the DOD.  
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B. THREATS TO MANEUVER FORCES 

The potential threats to maneuver forces are discussed in this section. Maneuver 

forces often have to operate at the forward areas of the battle. This situation results in 

maneuver forces being potentially exposed to threats from the air, land, and sea (for 

operations in proximity to the coast). The operational concept defined by this thesis is a 

land-to-land offensive maneuver, which is discussed in further detail in the Operational 

Analysis section in Chapter III. The following discussion is thus restricted to air and 

ground threats. 

1. Air Threats 

Air threats to maneuver forces are becoming more diverse. Besides the traditional 

threats of fixed wing aircraft and attack helicopters, unmanned aerial vehicles (UAVs) 

and unmanned combat aerial vehicles (UCAVs) are fast becoming a credible threat to 

maneuver forces. 

a. Fixed Wing Aircraft 

The armament of fixed wing aircraft capable of attacking ground targets could 

include 20 to 30 mm caliber gun(s), air-to-ground missiles, and bombs. For GCVs with 

substantial armor, aircraft guns(s) are unlikely to cause significant damage. However, for 

non-armored platforms, for example, the Avenger system mounted on a High Mobility 

Multipurpose Wheeled Vehicle (HMMWV), aircraft guns would be a threat. The use of 

missiles and bombs require fixed wing aircraft to fly low for better accuracy. The 

presence of anti-aircraft weapons would prevent fixed wing aircraft from flying at low 

altitudes, resulting in lowered accuracy of munitions, for example, dropped bombs. In 

addition, fixed wing aircraft move much faster relative to the maneuver force formation. 

Therefore, if the approach angle is unsuitable, the fixed wing aircraft may have to wait 

for the next pass before being able to conduct the attack. In recent times, the threat from 

fixed wing aircraft has been reduced compared to the attack helicopter. 
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b. Attack Helicopter 

The armament of attack helicopters is similar to fixed wing aircraft with the 

exception of bombs. In addition, attack helicopters could also be armed with rockets. 

Attack helicopters have the ability to fly low under radar cover, often using local terrain 

to mask their signature and “popping-up” just before the attack. This modus operandi 

utilizes the element of surprise, resulting in the maneuver force having minimal reaction 

time. Consequently, threats from attack helicopters have been more predominant as 

compared to fixed wing aircraft. 

c. Unmanned Aerial Vehicle 

An increasing trend in recent times is the use of UAVs. UAVs are mainly used for 

reconnaissance to bring back the location of the maneuver formation so the adversary can 

launch offensive attacks. Some UAVs are now fitted with payloads, making them 

UCAVs and capable of conducting offensive attacks. UAVs/UCAVs are physically 

smaller in size compared to fixed wing aircraft or attack helicopters and are harder to 

detect. Due to the unmanned nature of UAVs/UCAVs, there is no possibility of human 

casualty. UAVs/UCAVs also cost significantly less than manned aircraft. A quick 

comparison of unit cost estimates places the MQ-9 Reaper at approximately $17 million 

(DOD 2012) versus $85 million (Butler 2013) for the F-35A (full production rate per unit 

in 2018). Due to the above-mentioned factors, the threat from UAVs/UCAVs is expected 

to increase over time. 

d. Cruise Missiles 

Cruise missiles as a threat to maneuver force formations are mentioned here for 

completeness. In the author’s opinion, using a cruise missile to target a maneuver 

formation is not cost efficient. Cruise missiles are often fired from long ranges, which 

require significant time to cover the distance between the launch platform and the target. 

The BrahMos is currently the fastest cruise missile with a maximum range of 290 

kilometers and speed of Mach 3 (Army-Technology 2015c). If fired at maximum range, 

the BrahMos reaches the target in about five minutes. Modern GCVs, such as the Abrams 

tanks and Bradley Fighting Vehicles (BFVs), can have maximum speeds of about 70 
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kilometers per hour (Army-Technology 2015b). In the time taken for the cruise missile to 

reach the intended location, the maneuver formation may have moved a significant 

distance away from the previous location. 

2. Ground Threats 

Ground threats to maneuver forces manifest in many forms. Depending on the 

operating environment, sources of potential ground threats include infantry weapons, 

medium and large caliber guns of ground vehicles and tanks, rockets, artillery, mortars, 

and guided munitions. 

a. Small- to Medium-Caliber Gunfire 

The threat from small to medium gunfire can originate from infantry or ground 

vehicles. Firearms carried by infantry range from 5.56 mm to 12.7 mm caliber rifles 

(Department of the Army 2011a). Ground vehicles often have self-protection armament 

(or secondary armament) ranging from 7.62 mm to 30 mm caliber guns (Department of 

the Army 2011a). Small to medium gunfire are not expected to pose a significant threat to 

ground platforms with armor protection. With regard to HMMWV and platforms with 

similar levels of protection, small to medium gunfire could cause damage to the platform 

and crew. 

b. Rockets, Artillery, and Mortar 

Rockets, artillery, and mortar (RAM) projectiles are fired from long ranges and 

generally without in-flight guidance. The probability of the maneuver formation 

sustaining a direct hit is likely to be low; however, collateral damage from fragments and 

blast effects could still cause damage to maneuver formation. To increase the 

survivability of maneuver formation, it is reasonable to reduce vulnerability by improving 

protection against fragment and blast effect. In regard to direct hits, it may be a better 

approach to improve survivability by reducing susceptibility. The maneuver formation 

may employ tactical movement to prevent adversary RAM crew from easily anticipating 

the location of the formation upon impact of the RAM projectiles. 
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c. Anti-Tank Guided Missile 

Anti-tank guided missiles (ATGMs) can operate as a single system or as an 

integrated system with ground or air platforms. Some examples of ATGMs include the 

Spike, Milan, TOW, and Javelin. The effective range of ATGMs may vary from two 

kilometers (for Milan), to the eight kilometers (for Spike with extended range; Army-

Technology 2014). ATGMs are commonly equipped with tandem charge warheads to 

defeat explosive reactive armor (Army-Technology 2014). 

d. Rocket Propelled Grenade 

Rocket propelled grenades (RPGs) are widely proliferated and easy to operate. 

RPGs are typically fired from the shoulder, similar to MANPADS. The most effective 

models (e.g., the RPG-7V) are fitted with tandem warheads to defeat the explosive 

reactive armor of tanks. The range of RPGs is typically within 300 to 600 meters 

(Department of the Army 2011a). 

e. Tank Munitions 

The author refers to tank munitions as the projectiles fired from the main guns of 

main battle tanks. For example, the main gun of the Abrams main battle tank would be a 

120 mm caliber projectile. Tank munitions commonly range from 75 mm to 120 mm 

calibers (Department of the Army 2011a) with the exception of some Russian and 

Chinese systems with main guns of 125 mm caliber. As a general norm, the larger the 

caliber, the higher the destructive effect, for example, the kinetic energy or blast power 

(depending on the type of projectile). Tank munitions have significant penetrative ability 

and can cause serious damage to ground vehicles. 

C. AIR DEFENSE 

The DOD Dictionary of Military and Associated Terms (2014) defines air defense 

as direct (active and passive) defensive actions taken to destroy, nullify, or reduce the 

effectiveness of hostile air threats against friendly forces and assets. Active air defense is 

defined as direct defensive action taken to destroy, nullify, or reduce the effectiveness of 

hostile air and missile threats against friendly forces and assets including the use of 
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aircraft, air defense weapons, weapons not used primarily in an air defense role, and 

electronic warfare (DOD 2014). Passive air defense encompasses all measures other than 

active air defense to destroy, nullify, or reduce the effectiveness of hostile air threats 

against friendly forces and assets (DOD 2014). 

NATO categorizes active air defense systems broadly into very-short-range air 

defense (VSHORAD), short-range air defense (SHORAD), medium-range air defense, 

and air defense fighters based on the air space defended (Choenni and Leijnse 1999). 

Medium-range air defense is sometimes referred to as high-to-medium air defense 

(HIMAD). The range of a projectile is generally commensurate with the physical size of 

the projectile in order to have the required amount of energetic material for propulsion. 

Larger physical sizes translate to increased weight. With respect to MAD systems, the 

expected speeds of movement are in the ranges of 50 to 70 kilometers per hour. 

Consequently, HIMAD systems are less relevant within the scope of this thesis due to the 

physical size and weight of projectiles required. The following sections focus on 

VSHORAD and SHORAD systems. 

NATO defines VSHORAD as systems that defend up to six kilometers in a 

horizontal direction and up to three kilometers in a vertical direction; SHORAD systems 

defend up to 12 kilometers in a horizontal direction and up to six kilometers in a vertical 

direction (Choenni and Leijnse 1999). The effective range of weapons and projectiles are 

often described using slant range. Slant range is defined as the direct line-of-sight 

distance between the air threat and defender. By a simple approximation using 

Pythagoras’ Theorem, the author associates VSHORAD and SHORAD with slant ranges 

of six to seven kilometers and 13 to 14 kilometers respectively. 

The type of air defense weapon defending the airspace is directly related to the 

effectiveness of threat suppression. Aircraft bombing could be carried out at different 

altitudes; bombing at lower altitude generally increases accuracy. The presence of air 

defense weapons force aircraft to carry out bombing at higher altitudes with reduced 

accuracy. Bombing with height of release over 15,000 feet (approximately four to five 

kilometers) is considered to be high-level bombing (DOD 2014). 
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D. CAPABILITY NEED FOR MOBILE AIR DEFENSE 

Maneuver forces need to survive in order to execute the mission. Ball (2003) 

defines aircraft combat survivability as the capability of an aircraft to avoid or withstand 

a man-made hostile environment. Parallels could be drawn with regard to the 

survivability of ground combat vehicles. Combat survivability has an inverse relationship 

with vulnerability and susceptibility. When either vulnerability or susceptibility is 

reduced, survivability is increased. Vulnerability is defined as the inability of the 

platform to avoid a man-made hostile environment, while susceptibility is inability of the 

platform to withstand a man-made hostile environment (Ball 2003). Ball (2003) describes 

six ways to reduce susceptibility, namely, (1) threat warning, (2) noise jamming and 

deceiving, (3) signature reduction, (4) expendables, (5) threat suppression, and (6) 

weapon, tactics, flight performance, crew performance, and proficiency. The availability 

of mobile air defense support to maneuver forces suppresses the aerial threat, reduces 

susceptibility, and thus increases survivability of maneuver forces. 

Tng (2014) studied the effects of sensing capability on the survivability of ground 

combat vehicles during ground force maneuver operations. The simulation results 

indicated that the presence of air defense capability was significant in improving the 

survivability of ground combat vehicles. 

1. History of Mobile Air Defense in the United States 

The capability need for mobile air defense for maneuver forces is not new. 

Antiaircraft gunners were the first U.S. troops in action during the Korean War, and 

World War II (Anderson, 2000). In a Congressional Budget Office study titled Army Air 

Defense for Forward Areas: Strategies and Costs by Lussier (1986), mobile air defense 

for maneuver forces was referred to as air defense for forward areas. The Army then had 

three SHORAD systems, namely Chaparral, Vulcan, and Stinger at the division levels. 

The Chaparral had low survivability in forward areas, and required long lead times for 

target acquisition; the Vulcan 20mm Gatling gun had limited effectiveness against 

aircraft threats (Lussier 1986). The Stinger was still operated as a MANPADS, and had 

limited mobility. The M247 Sergeant York Division Air Defense (DIVAD) anti-aircraft 
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gun was intended to replace the ineffective Vulcan and Chaparral. The cancellation of the 

DIVAD program in 1985 (Kasser 2001) created a gap in the mobile air defense 

capability. In the interim, the MANPADS-under-armor (MUA) concept was adopted to 

provide mobile air defense to maneuver forces (Federation of American Scientists 2000). 

This involved Stinger MANPADS and gunners transported in armored vehicles during 

formation movement. The Stinger gunners had to dismount to engage the aerial threats 

when required. Such an operational concept was not ideal, as Stinger gunners would be 

exposed to enemy fire when dismounted. 

 The M6 Linebacker (a variant of the BFV) eventually filled the gap left by the 

cancellation of the DIVAD in 1997 (Army-Technology 2015a). The system was adapted 

from the Avenger system, which had Stinger missiles mounted on an HMMWV. The M6 

Linebacker uses the same turreted system as the Avenger, but replaces the HMMWV 

with a BFV chassis that allows similar mobility to the tracked maneuver forces. The M6 

Linebackers were converted back into BFVs in 2005 (Army-Technology 2015a). 

2. Current State of Mobile Air Defense in the United States 

The conversion of the M6 Linebackers back into BFVs left the United States with 

severely limited options with regard to mobile air defense. In the following section, the 

author discusses the possible alternatives if mobile air defense is required by the United 

States on short notice. 

a. Current Fielded Systems 

The nearest weapon system is the Avenger that has mounted Stinger missiles for 

air defense against aerial threats. However, the missiles are mounted on a wheeled 

platform. Wong and Huang (2006) analyzed the difference between wheeled and track 

vehicles using simulation models. The results showed that the amount of difference in 

traction between wheeled and tracked vehicles depended on the type of terrain. In 

general, wheeled vehicles had shorter contact length and area than tracked vehicles, 

leading to lower traction. 
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Consequently, the use of the Avenger for mobile air defense may result in air 

defense protection gaps due to the difference in mobility. For example, there may be 

difficult terrain where the tracked maneuver forces could overcome, while the Avenger 

would be left behind. In addition, on terrain more difficult than paved roads, the speed of 

the Avenger is likely to be less than the tracked maneuver forces. 

One other option would be to revert to the MUA concept. However, in this age 

where high casualties are unacceptable, exposing Stinger gunners to enemy fire would be 

untenable. 

b. Planned Replacement 

At the time when the M6 Linebackers were converted back to BFVs, there were a 

few ongoing projects that could potentially be adapted for mobile air defense. They 

include the Medium Extended Air Defense System (MEADS), Surface Launched 

Advanced Medium Range Air-to-Air Missile (SLAMRAAM), and the Complementary 

Low Altitude Weapon System (CLAWS). The truck-mounted MEADS is more of an 

HIMAD system meant to replace the Homing All the Way Killer (HAWK) and Phased 

Array Tracking Radar to Intercept On Target (PATRIOT). The U.S. Army Air and Missile 

Defense Operations field manual (Department of the Army 2009) stated that 

SLAMRAAM was planned to replace existing Stinger systems. However, the 

SLAMRAAM is also truck-mounted and lacks the required mobility. The CLAWS was 

initiated by the Marines to replace Avenger systems (Strategy Page 2008). It is mounted 

on the HMMWV to fulfill the expeditionary requirements of the Marines. This seemed to 

be the closest fit for a mobile air defense solution. Overall, there seemed to be no 

intention of having a tracked short-range air defense (SHORAD) system to replace the 

M6 Linebacker. Nevertheless, the CLAWS, SLAMRAAM, and MEADS were cancelled 

in 2006 (Strategy Page 2008), 2011 (Dunnigan 2011), and 2013 (Hale 2012), 

respectively, leaving the mobile air defense gap unfilled. 

c. Not a Requirement 

Some may be of the opinion that the United States does not require mobile air 

defense. The last real air threat was probably during the Korean War in 1950 (Anderson 
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2000). Since then, the United States has been able to assert air superiority and maintain 

friendly skies during recent conflicts, for example, Kuwait (Lambeth 1993), Iraq, and 

Afghanistan (Krepinevich 2003). However, it should be noted that the adversaries faced 

by the United States in recent conflicts did not have significant air capabilities. However, 

if the United States were to engage an adversary of equal capability, air superiority may 

not be assured, even with technologically advanced air platforms. Anderson (2000) 

echoed similar views as he reiterated that mobile air defense remains relevant and that 

there will not be another Desert Storm where the United States reigned supreme in the 

skies. He may have been proven wrong for the moment, for the United States reigned 

supreme in the air yet again during the Iraq war in 2003; but who is to say the next war 

may not be against a technologically equal adversary? In a documented briefing to the 

Army on the future challenges of Army Air and Missile Defense by RAND, Lussier et al. 

(2002) highlighted that SHORADs are relatively cheap and easy to propagate on the 

battlefield. They remain a cost-effective option for maneuver force protection. More 

recently, in the U.S. Marine Corps 2014 Command Element Roadmap, providing air and 

missile defense to maneuver forces was identified as a key enabler to the force during 

offensive combat operations (Department of the Navy 2014). 

d. Reviving the M6 Linebacker 

Some may view reviving the M6 Linebacker as a potential contingency plan; for 

example, the M6 Linebacker was integrated on the BFV chassis, and as long as the BFV 

remains in service, revival could be conducted on short notice if required. It should be 

noted that the M6 Linebacker was integrated on the BFV M2A2 Operation Desert Storm 

(ODS) chassis. There are already improved variants such as the M2A3 and M3A3 

(Army-Technology 2015b). The integration compatibility of the turreted Stinger launcher 

and fire controls may not have been a requirement when the BFVs were upgraded. There 

may also have been upgrades to the Stinger missile. Consequently, there may be 

compatibility issues when attempting to integrate the turreted Stinger launcher, and fire 

controls onto the improved BFV variants. Such a plan also necessitates the requisition of 

BFVs at a time when they are most needed, thus reducing the number of BFVs available 

for operations and turnaround. Such a situation would not be ideal for war planners. 
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In addition, the spares for the turreted system may no longer be available. There is 

no literature to suggest that the removed turret components were salvaged and stored. 

Even if the removed turret components were salvaged and stored, they may not have been 

maintained. Last but not least, having the system does not equate to having the capability. 

The operators need to have been trained on the systems before being called upon to 

perform in real operations. Such is the U.S. maxim of “train the way you will fight” 

(Stytz, Banks, and Young 2003). The lack of training could lead to inefficiencies of the 

mobile air defense unit itself, between mobile air defense units, and maneuver forces. 

Professor Christopher Adams lectures on Combat Survivability in the Naval 

Postgraduate School (NPS) in Monterey, CA. On January 13, 2015, at Watkins Hall, 

NPS, he described his deployment in Afghanistan during the first year of the war, “The 

aviators were ready and aircraft were stacked with munitions. The ground forces were 

just not used to calling for fire. Then they got really good at it.” For different services to 

work together there has to be familiarity in order to have synergy in operations. If the 

maneuver forces, having not trained with mobile air defense, are required to work 

together on short notice, the effect will not be optimal. 

3. Capability Gap 

The earlier sections describe the current situation of mobile air defense in the 

United States. Current fielded systems, such as the Avenger, delivers only partial 

capability at most due to lack of terrain mobility and protection against ground threats. 

Reverting to MUA exposes Stinger gunners to enemy fire during engagement, which 

would be untenable. Potential air defense replacements including the MEADS, 

SLAMRAAM, and CLAWS were cancelled. There are no provisions for reviving the M6 

Linebacker and if done on short notice, may lead to issues related to platform integration, 

and operational synergy. 

The need for mobile air defense remains. There is a clear capability gap for the 

U.S. Armed Forces in the area of mobile air defense especially for maneuver forces 

operating in an environment with terrain. 
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E. EXISTING SYSTEMS 

This section presents a selection of different types of MAD systems in the world. 

The systems are broadly categorized into MANPADS and integrated (wheeled and 

tracked) MAD systems. 

1. MANPADS 

MANPADS belong to the VSHORAD class of air defense weapons and require 

human gunners during operation. In the context of mobile air defense in this thesis, 

MANPADS and gunners are transported by vehicles, which provide the mobility required 

in the operational area. This mode of operation is similar to the MUA concept elaborated 

in the previous section regarding the history of U.S. mobile air defense. The two main 

types of MANPADS are fire-and-forget (FNF) and command-line-of-sight (CLOS). 

MANPADS could also be mounted and integrated onto wheeled or tracked platforms, as 

discussed in the later sections. 

a. Fire and Forget 

FNF MANPADS are mainly infrared heat seeking missiles. Upon the completion 

of trigger action by the gunner, the infrared seeker controls and guides the missile to the 

target. There are many MANPADs manufacturers in the world. Common FNF 

MANPADS include the SA-24, Stinger RMP Block II, and the Mistral 2. Most FNF 

MANPADS comprise a launch tube, missile, detachable firing mechanism, and coolant 

unit (to increase the sensitivity of the infrared seeker). The maximum range of the above 

mentioned MANPADS are about six to seven kilometers with missiles speeds between 

Mach 2.2 to Mach 2.7 (Department of the Army 2011b). The Stinger and Mistral are 

shown in Figures 2 and 3, respectively. 
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Figure 2.  Stinger Missile (from Department of the Army 2011b, 6–56) 

 
Figure 3.  Mistral on a Tripod (from Department of the Army 2011b, 6–57) 

b. Command Line of Sight 

CLOS MANPADS are mostly laser-guided and commonly known as beam riders 

since the missiles ride on the laser beam for guidance. The gunner has to maintain track 

of the target upon the completion of trigger action until the missile reaches the target. 

Examples of CLOS MANPADS include the RBS-70 Bolide and Starstreak High Velocity 

Missile. The RBS-70 Bolide has a maximum range eight kilometers and missile speed of 

Mach 2 (Army-Technology 2015d). The Starstreak High Velocity Missile has a 

maximum range seven kilometers and missile speed of Mach 4 (Department of the Army 

2011b). The Starstreak High Velocity Missile is shown in Figure 4. 
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Figure 4.  Starstreak Lightweight Multiple Launcher with Missile (after 

Department of the Army 2011b, 6–55) 

2. INTEGRATED MOBILE AIR DEFENSE SYSTEMS 

This section introduces integrated MAD systems of the VSHORAD and 

SHORAD class. The author first differentiates integrated MAD systems by the type of 

mobility (e.g., wheel or tracked). Subsequently, each category is sub-categorized into 

oblique-launched and vertical-launched MAD systems. Oblique-launched MAD systems 

generally have shorter ranges; many of the systems are the result of integration of 

MANPADS with ground platforms. 

a. Oblique-Launched Wheeled MAD Systems 

Examples of oblique-launched wheeled MAD systems include the Avenger 

(integration with Stinger MANPADS), Albi (integration with Mistral 2 MANPADS), 

Crotale New Generation (NG), and SPYDER-Short Range (SR). Using information 

compiled from Boeing (2015), World Equipment Guide Volume 2 (Department of the 

Army 2011b), and Rafael (2015), a brief summary of the four systems with respect to 

common characteristics of MAD systems is provided in Table 1. The Crotale 

hypervelocity VT-1 missile is able to achieve all round coverage without having a 

vertical-launched module. The high speed of the missile enables the achievement of 40-

meter vertical rise before being directed to the target (Department of the Army 2011b). 

The Albi and Crotale NG are shown in Figures 5 and 6, respectively. 
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Table 1. Summary of Avenger, Albi, Crotale NG and SPYDER-SR 
Characteristics 

Avenger Albi CrotaleNG SPYDER-SR 
Missile Stinger RMP Mistral 2 VT-1 Derby, Python 5 
Ran2e (km) 8 6 11 15 
Fire on the Move Yes No No No 
Guidance FNF FNF CLOS FNF, CLOS 
Threat Extemal radar Extemal radar Organic radar Extemal radar 
Information 

Figure 5. Albi with Mistra1 2 (from Depruiment of the Almy 2011b, 6-57) 

Figure 6. Crotale NG XA-181 SAM Launcher Vehicle (from Depruiment of 
the Almy 2011b, 6-61) 

b. Vertical-Launched Wheeled MAD Systems 

The Vertical-Launched (VL) MICA is one example of wheeled ve1iical-launched 

MAD system. The following infonnation regru·ding the VL MICA is provided in Almy-
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Technology (2015e). The VL MICA fires air-to-air MICA missiles fitted with either 

infrared or radar frequency seekers. In view of the two types of seekers, the system can 

be FNF or CLOS. The range of the MICA missile is approximately 10 kilometers, but 

does not have fire-on-the-move capability. 

The MEADS belongs to the HIMAD class of air defense system, but is shown in 

Figure 7 to illustrate the typical physical structure of a wheeled vertical-launched air 

defense system. 

 
Figure 7.  MEADS Launcher (from Lockheed Martin 2013) 

c. Oblique-Launched Tracked MAD Systems 

Examples of tracked oblique-launched MAD systems include the M6 Linebacker 

(converted back to BFV M2A2 ODS since 2005), Stormer, and Pantsir S1. Using 

information compiled from World Equipment Guide Volume 2 (Department of the Army 

2011b) and Army-Technology (2015a), a brief summary of the three systems with respect 

to common characteristics of MAD systems is provided in Table 2. The Pantsir is shown 

in Figure 8. 
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Table 2. Summa1y ofM6 Linebacker, Pantsir S1 and St01mer 
Characteristics 

M6 Linebacker Pantsir Sl Stormer 
Missile StingerRMP 9M335 Starstreak 
Ran2e (km) 8 12 7 
Fire on the Move Yes Yes No 
Guidance FNF CLOS CLOS 
Threat Information Extemal radar Organic radar Extemal radar 

Figure 8. Pantsir S1 (from Depattment of the Almy 2011b, 6-59) 

d. Vertical-Launched Tracked MAD Systems 

There are not many tracked veliical-launched MAD systems. One example is the 

Russian SA-15b also known as the Gmmtlet or TOR-MI. The SA-15b has fire-on-the­

move capability using 9M331 smface-to-air missiles with a range of approximately 12 

kilometers (Deprutment of the Almy 2011b). An organic radat· obtains threat infonnation, 

which is used to guide the missile to the target via CLOS. The SA-15b automotive 

platf01m is able to travel up to 65 kilometers per hom on highways and 35 kilometers per 

hom on di1t roads (Depattment of the Almy 2011b). The SA-15b is shown in Figme 9. 
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Figure 9.  SA-15b/Gauntlet/TOR-M1 (from Department of the Army 2011b, 6–

65) 
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III. SYSTEMS ENGINEERING PROCESS 

Systems Engineering is an interdisciplinary approach and means to enable 
the realization of successful systems. It focuses on holistically and 
concurrently understanding stakeholder needs; exploring opportunities; 
documenting requirements; and synthesizing, verifying, validating, and 
evolving solutions while considering the complete problem, from system 
concept exploration through system disposal. (BKCASE Editorial Board 
2014, 8) 

In the previous chapter, the need for mobile air defense was addressed. GCVs 

remain susceptible to aerial threats especially during formation movement and deprived 

of established local air defense protection. Current fielded MAD systems are wheeled, 

thus delivering partial capability at best due to the lack of mobility. Reverting to using 

MANPADS to defend the maneuver formation exposes gunners to enemy fire during 

engagement and increases the potential of high casualties. Potential air defense 

replacements were cancelled due to budget constraints. Reviving the M6 Linebacker may 

encounter platform integration and operational synergy issues. Therefore, there remains a 

capability gap in the area of mobile air defense for maneuver forces. 

In order to fill this capability gap, the DOD may acquire a MAD system. The 

systems engineering process is extremely useful for an acquisition project. The above 

quote from The Guide to the Systems Engineering Body of Knowledge (SEBoK) describes 

the systems engineering process as a systematic and holistic methodology. Stakeholder 

needs are defined leading to development of functional needs and subsequent fulfillment 

of functional needs by the physical architecture. Such an interlinked model allows for 

comprehensive tracking during design iterations to ensure stakeholder needs are 

addressed. Acquisition work is premised on having a set of requirements from which to 

carry out development or purchase of requisite materiel and resources. This approach 

ensures the final system or product is useful and achieves the intended objective(s). The 

systems engineering process for acquisition of a MAD system is described in this chapter. 

The method used in this systems engineering acquisition process is to first, define the 

problem; second, conduct stakeholder analysis; third, conduct operational analysis; 

fourth, conduct functional analysis; and fifth, generate the physical architecture. The 
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result of this method that iterates between these five tasks is to characterize the system 

concept for delivery as expressed through a concept of operation. 

A. MODEL-BASED SYSTEMS ENGINEERING 

The multi-phased systems engineering process described earlier commonly results 

in many layers of interlinked information; for example, operational activities are 

implemented by functions, which are in turn performed by components. Manual tracking 

and updating of the relationships between the layers can be tedious. Model-based systems 

engineering is defined by INCOSE (2007) as the formalized application of modeling to 

support system requirements, design, analysis, verification, and validation activities 

beginning in the conceptual design phase and continuing throughout development and 

later lifecycle phases. The author uses a model-based system engineering tool to aid the 

tracking and updating of interlinked information. The tool of choice is Vitech CORE 9, 

which supports DODAF Version 2.0 viewpoints integrated with requirements, analysis, 

and verification to provide a complete system definition (Vitech 2015). 

B. PROBLEM DEFINITION 

Ground combat vehicles are susceptible to aerial threats. During maneuver, the 

formation may be in unfamiliar territory, and without established local air defense 

support. Mobile air defense may be required to increase the survivability of ground 

combat vehicles during movement. The U.S. Armed Forces has a need to protect 

maneuver forces from aerial threats during movement.  

1. Assumptions 

In defining the problem statement, the overarching assumption was that the 

United States would be engaging an adversary of equal military might, and technological 

maturity. Such an assumption is reasonable considering the uncertainty of world affairs. 

One recent example is the strained relationship between the United States and Russia 

since April 2014 due to Russia’s alleged involvement in the internal state affairs of 

Ukraine. 
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The follow-on assumption would be that significant friendly fighter aircraft would 

be required in air-to-air combat with adversary fighter aircraft in an attempt to achieve air 

superiority. This assumption takes into consideration the increasing costs of building a 

fighter aircraft. Limited resources and the increasing aircraft cost would led to a reduction 

in aircraft fleet size in the U.S. Armed Forces. Aircraft may become more capable and 

multi-role, but they cannot be present at more than one location simultaneously. The 

preoccupation of friendly multi-role fighter aircraft in air combat results in a lack of 

available aircraft for close air support (CAS) to ground forces.  

It is also assumed that the objective location for maneuver forces is heavily 

defended by adversary active surface-to-air missiles (SAM). To prevent heavy casualties 

in such a scenario, the use of friendly fighter for suppression of enemy air defense 

(SEAD) would not be considered.  

2. Boundaries 

Boundaries help to scope the design of the system by facilitating identification of 

what is considered within the system and what is external. System design is influenced by 

the interactions between the system and external environment. Energy, matter, material 

wealth, and information (EMMI), are the four main modes of interaction between entities 

(Langford 2012). 

The MAD system itself is a system. It integrates with the GCVs in the form of a 

formation to realize a maneuver force acting as a system of systems (SOS). Langford 

(2012) defines an SOS as a set of systems that are both integrated and interoperable to 

achieve a set of meta-system functions in which all the component systems participate (to 

varying degrees). The maneuver force formation and MAD system share many common 

interactions with external entities. Consequently, the system context diagram was 

developed with the maneuver force formation as centroid. 

The boundaries of the maneuver force formation are discussed via a system 

context diagram in Figure 10, which illustrates how the system interacts with external 

systems and environment during operation. The maneuver force formation is shown in its 

external environment. 
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Figure 10.  Context Diagram of Maneuver Force 

In Figure 10, rounded rectangle boxes represent entities. The system under study, 

the environment, and physical objects (including interfacing systems), external systems, 

structures, and buildings (that interact with the system) are referred to as entities. Entities 

have to be linked in order to have interaction. It was mentioned earlier that objects 

interact with each other via the transfer of EMMI (Langford 2012). EMMI may be 

transferred via such links. Double-headed arrows represent two-way linkages, that is, 

EMMI could be transferred to and from the linked entities. Single-headed arrows 

represent one-way linkages, that is, EMMI could only be transferred from the originating 

entity to the linked entity. The type of EMMI transferred is shown in braces beside the 

link. A link could transfer more than one EMMI. 

The maneuver force formation interacts with five main entities, namely, higher 

command, the environment, air threats, ground threats, and the mission assault objective.  
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a. Higher Command 

The mission would have been tasked by higher command. During operations, 

higher command would want to be aware of the status of the mission. Consequently, the 

maneuver force formation has to provide status updates to higher command. Status 

updates could include situational reports, reconnaissance intelligence, weather conditions, 

and supply support levels. Based on the status updates, higher command may decide to 

issue new commands or to amend previous commands. Status updates and commands are 

considered information. Therefore, there is a two-way communication link transferring 

information between the maneuver force formation and higher command.  

b. Environment 

Upon commencement of the mission, the maneuver force formation is inserted 

into an operating environment. The environment imposes constraints on the maneuver 

force formation via one-way transfer of EMMI. Maneuver forces (in this context) are 

ground vehicles that need to interact with the traveling surface in order to move. Good 

traveling surfaces like paved roads improve the mobility of the maneuver force 

formation. Conversely, undulating terrain would greatly hinder movement of the 

formation. The terrain of the operating environment could have significant impact on the 

threat signature of the maneuver formation. Hilly terrain provides opportunities for cover 

and concealment during maneuver. Conversely, the formation would be more susceptible 

to detection when travelling in flat and open terrain. Visibility is of key importance 

especially for weapon systems that still rely on the eye of the operator to engage the 

adversary, such as MANPADS. Low visibility makes it harder to detect potential threats. 

The weather also affects the maneuver force formation. While precipitation is unlikely to 

affect the formation physically, the impact of adverse weather (e.g., snowstorms) would 

affect visibility and mobility. 

c. Air Threats 

The maneuver force formation interacts with air threats mainly via the transfer of 

information and munitions (mass). Information is transferred when the maneuver force 

formation detects, tracks, and identifies the air threats. Upon identifying the air threats, 
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munitions would likely be used to engage the air threats. Although the MAD units are 

more suited to fulfill this role, the small arms capability of GCVs would also contribute 

towards killing or deterring the threat. Similarly, from the point of view of the air threats, 

information is transferred when the maneuver force formation is detected and identified. 

There is lesser emphasis on tracking of ground threats due to the lower mobility. Air 

threats could then use munitions to engage the maneuver force formation. In the case of 

UAVs, only information may be transferred, such as detecting and identifying the 

location of the maneuver force formation before passing the information to attacking 

units. 

d. Ground Threats 

Similar to air threats, the maneuver force formation interacts with ground threats 

mainly via the transfer of information and munitions. Information is transferred when the 

maneuver force formation detects and identifies the ground threats. Upon identifying the 

ground threats, munitions would likely be used to engage the ground threats. A similar 

interaction is expected for the ground threats with respect to the maneuver force 

formation. 

e. Assault Objective 

Once the maneuver forces have arrived at the objective location, assault of the 

objective using munitions would commence. The objective is unlikely to have significant 

protection at this stage, as all available defenses would have been deployed earlier to 

prevent the maneuver force formation from reaching the objective. Such a scenario is 

likely to involve the one-way transfer of mass, such as munitions from the maneuver 

force formation to the objective. 

C. STAKEHOLDER ANALYSIS 

Stakeholder analysis is conducted to identify the needs, objectives, and concerns 

of the major stakeholders in a program. Stakeholders are identified and ranked according 

to their interest and influence on the program throughout the program lifecycle. High 
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influence stakeholders are often able to affect the direction of the program. Their needs 

and objectives could result in requirements for the program. 

There are five main stakeholders identified in the acquisition of a MAD system, 

namely (1) higher management, (2) armed forces, (3) adversary, (4) defense industry, and 

(5) U.S. citizens. The needs, objectives and concerns of the respective stakeholders are 

discussed in the following section.  

a. Higher Management 

Higher management includes the U.S. Congress and DOD. They wield the highest 

influence with regard to the MAD system program. The three pillars of an acquisition 

program are performance, budget and schedule. Budget for the program has to be 

approved by Congress. Budget cuts could lead to reduction in capability or even 

cancellation. The mission of the DOD is to provide the military forces needed to deter 

war and to protect the security of the United States (DOD 2015). They possess the power 

to decide on the types of capabilities and systems required for the United States Armed 

Forces. Through the program executive office that manages defense acquisitions, the 

DOD also has close control over testing and evaluation of the MAD system. In regard to 

a maneuver mission, the objective of Higher Management is to prevail over the adversary 

while minimizing casualties. They would be interested in the MAD system as it affords 

protection to the GCVs, thus minimizing the risk of having casualties. Higher 

Management would be concerned if GCVs were unprotected in the presence of aerial 

threats. 

b. Armed Forces 

The Armed Forces include the U.S. Army, Marine Corps and Fighter Squadrons. 

The U.S. Army and Marine Corps operate GCVs including the M1 Abrams tank and 

BFV. The offensive maneuver mission as described in this thesis depends on GCVs for 

mission execution. Consequently, the United States Army and Marine Corp have high 

interest in the MAD system due to the much-needed aerial protection afforded by MAD 

systems during maneuver. Current interim measures include using the wheeled Avenger 

system that provides partial capability, or to bear the risk of aerial attacks. Consequently, 
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the U.S. Army and Marine Corps would like to have a MAD system of high performance 

and quality. Fighter aircraft may not be able to advance to secure key areas due to the 

presence of adversary SAM sites. The offensive maneuver mission, if successful, 

neutralizes the adversary SAM capability. In order to neutralize the adversary SAMs, 

GCVs need to survive until arrival at the objective location. Aerial protection afforded by 

MAD systems increase the likelihood of survival of GCVs until arrival at the objective 

location. Fighter Squadrons thus have direct interest (primary) in GCVs and indirect 

interest (secondary) in MAD systems. 

c. Adversary 

It is often heard in defense circles that the adversary or threat always gets a vote 

(Butler 2015). The objective of the adversary is to protect key area(s) by killing incoming 

maneuver forces. The adversary has high interest in MAD systems as they reduce the 

effectiveness of their aerial capabilities when attacking incoming maneuver forces. At an 

SOS level, the presence of MAD systems as part of the formation indirectly increases the 

risk of adversary SAMs being neutralized, leading to key areas possibly being taken over. 

An effective MAD system may also result in the adversary having to improve the 

capability of their air and ground assets to neutralize the incoming maneuver forces. 

d. Defense Industry 

Defense industries are commercial entities. Their main aim is to generate revenue. 

By seeking to participate in the MAD system program, defense industries hope to gain 

experience, knowledge, and expand their portfolio. They also aim to increase market 

share and establish significant influence in the defense industry. As part of operation and 

maintenance, spares would be required for replacement and upgrade. Since most parts are 

likely to be special-to-type and proprietary, defense industries stand to generate steady 

downstream revenue. Defense industries would be concerned if they were not selected to 

build a part or the entire MAD system. 
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e. U.S. Citizens 

The citizens of the United States are generally interested in state affairs. They are 

concerned about U.S. interests, but not too supportive of overseas military action. A poll 

conducted by Hart Research Associates/Public Opinion Strategies in October 2014 

showed that 66% of responders felt that the war on Iraq was not worth it. Despite the 

interest, citizens have limited influence with regard to acquisition programs. On the other 

hand, citizens are also the taxpayers and final sponsor of the MAD system. High costs of 

weapon system acquisition could result in public disapprovals to continue programs as in 

the case of MEADS (Kennedy 2012). Subsequently, such actions could potentially 

influence the decision of the Higher Command to discontinue or reduce the budget of the 

program. 

Based on the stakeholder analysis (discounting adversary), the overall stakeholder 

need is for the offensive maneuver mission to be successful so as to win the conflict or 

war. GCVs need to be survivable for the mission to be successful. In turn, GCVs require 

the aerial protection afforded by MAD systems. A highly survivable system also reduces 

casualty rates. 

D. OPERATIONAL ANALYSIS 

Maneuver forces are able fulfill a variety of missions in both offensive, and 

defensive scenarios. The Office of the Deputy Chief Management Officer (DCMO; 2015) 

defines JCA 3: Force Application as the ability to integrate the use of maneuver, and 

engagement in all environments to create the effects necessary to achieve mission 

objectives. Force Application is categorized into JCA 3.1: Maneuver, and JCA: 3.2, 

Engagement, as shown in Figure 11. JCA: 3.1 Maneuver is further categorized into 

Maneuver to Engage, Insert, Influence, and Secure (Office of DCMO 2015). 
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Figure 11.  Joint Capability Area 3.0: Force Application 

JCA 3.1: Maneuver is defined as the ability to move to a position of advantage in 

all environments in order to generate or enable the generation of effects in all domains 

and the information environment. In this thesis, the operational scope of maneuver forces 

is more focused towards an offensive capability over land to engage, insert, influence, or 

secure the objective. 

1. Operational Viewpoint 

The DODAF Version 2.02 uses the OV-1: High-Level Operational Concept 

Graphic to describe a mission, or scenario. The OV-1 illustrates the main operational 

concepts and interactions between the system, and the external environment (DOD 

2010b).  

Figure 12 shows the OV-1 for the maneuver force formation in a typical Blue 

Force versus Red Force scenario. Blue Force is trying to secure a key area (top left corner 

of Figure 12) controlled by Red Force. Air strikes are typically used in such scenarios; 

however, the key area is well defended by Red Force SAMs. Proceeding with air strikes 

may result in high casualties. A ground maneuver force is thus deployed by Blue Force to 

eliminate the Red Force SAMs. The Blue Force ground maneuver force is currently 
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located at the forward area in relative proximity to Red Force controlled area. The 

forward area is shown in the bottom right corner of Figure 12, where a forward command 

post is located. The area air defense established at the forward area does not reach far 

enough to protect the ground maneuver force until arrival at the objective. Blue Force 

aircraft are unable to provide CAS due to the coverage of Red Force SAM. The Blue 

Force ground maneuver force thus has to close the distance between the forward area and 

the objective with organic MAD systems in the formation for protection against air 

threats. During movement, the ground maneuver forces may be attacked by Red Force air 

and ground threats. 

 
Figure 12.  OV-1: Operational Concept of Offensive Maneuver Force 

During the mission, the Blue Force MAD systems have to communicate with each 

other and the GCVs. As a formation, they provide status updates to higher command at 

the forward command post. In response, the higher command may issue new orders based 

on the status reports. If detected, the Blue Force formation may need to defend against 

the Red Force air and ground threats. The mission is over if Blue Force formation is 
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killed by Red Force threats. However, if Blue Force formation survives the attacks by the 

Red Force air and ground threats, assault on the Red Force SAMs would commence.  

2. Operational Activity Model 

The DODAF Version 2.02 uses the OV-5b: Operational Activity Model to 

describe the operational activities (OA) that are normally conducted in the course of 

achieving a mission. The OV-5b illustrates the main operational concepts and interactions 

between the system, and external environment (DOD 2010b). Operational activities are 

enduring, that is, they are not specific to the physical system that performs the operational 

activities. The same operational activities are required to achieve the higher level 

maneuver force capability even if a new mobile air defense system is acquired. Figure 13 

illustrates the operational activities required in order to achieve the maneuver force 

mission. 

 
Figure 13.  OV-5b: Operational Activity Model for Offensive Maneuver Force  

All the operational activities are contained within a loop with starting and exit 

points shown as LP on the left and right of Figure 13, respectively. Throughout the entire 

mission, the formation provides status update to higher command, and receives new 

directions from higher command, if applicable. Upon starting the mission, the formation 

has to move towards the objective, and monitor the environment for threats or any 

abnormal conditions. OA.1 Monitor Environment, and OA.2 Move to Objective are the 

two operational activities executed respectively. Along the way, if air threats were 
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detected, a trigger would be generated form OA.1 Monitor Environment. Triggers are 

shown in green in Figure 13. In the absence of triggers, the resulting OA would not be 

executed. If air threats were detected, OA.3 Perform Air Defense would be triggered. 

This operational activity is performed by the MAD systems. Similarly, if ground threats 

were detected, OA.4 Perform Ground Defense would be triggered. This operational 

activity is performed by the GCVs. If no threats were detected, the formation moves on 

smoothly. Outputs of OAs are shown in gray. As shown in Figure 13, outputs may serve 

as inputs for other OAs. OA.2 Move generates the output when the formation arrives at 

the objective, which serves as the input for OA.5 Setup Local Air Defense, and OA.6 

Assault Objective. At this point, the GCVs execute OA.6 Assault Objective while the 

MAD systems execute OA.5 Set Up Local Air Defense to protect the GCVs in the 

interim until reinforcements arrive. 

E. FUNCTIONAL ANALYSIS 

Functional analysis is a technique that breaks down complex problems into 

smaller, simpler, and more manageable problems. A similar SOS concept is adopted for 

the conduct of functional analysis. The maneuver force that operates as an SOS 

comprises many functions and sub-functions. The main functions that are required by the 

SOS are F.1 Maintain Situational Awareness, F.2 Communicate, F.3 Move, F.4 Mitigate 

Air Threat, F.5 Mitigate Ground Threat, and F.6 Provide Power. In order to better 

understand what the maneuver force SOS and the MAD system are required to do; a 

functional analysis was conducted using the decomposition methodology. Decomposition 

by functions allows for an unbiased and non-solution specific analysis. Commencing the 

functional analysis at the SOS level allows a better appreciation of the overall mission 

that integrates the complementary functions that the MAD system and the GCVs may 

perform. 

The OV-5b Operational Activity Model describes the operational behavior of the 

maneuver force formation. Operational behavior is implemented by system behavior, 

which in turn is the sum of functions of the system. By analyzing what system behavior is 

required to implement the operational behavior, the functions of the SOS can be 
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determined. The SOS was first decomposed into main functions, which were 

subsequently further decomposed into sub-functions. The functional hierarchy for 

Mitigate Mission Threats is shown below in Figure 14 and comprises six main functions. 

 
Figure 14.  High-Level Functional Hierarchy for Mobile Air Defense Function 

a. Maintain Situational Awareness 

In order to mitigate mission threats, the SOS needs to know where the adversary 

is. Being aware of where the adversary is located relative to one’s own position is 

commonly known as situational awareness. Maintaining situational awareness can be 

sub-divided into detect, track, and identify, as shown in Figure 15. The SOS needs to be 

able to first detect the presence of a potential threat. Subsequently, with repeated 

detections, the SOS would then be able to track the movement of the potential threat. The 

SOS also needs to be able to identify the threat in order for the operator to decide on 

engagement plans. 

 
Figure 15.  Functional Hierarchy for F.1 Maintain Situational Awareness 
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b. Communicate 

The SOS needs to be able to communicate. Within the SOS, the mobile air 

defense units need to communicate with each other, and the GCVs of the maneuver force 

formation. As an SOS, it also needs to communicate with higher command. 

Communication could include many forms of information exchange including audio, 

visual, and data. Hence, the SOS must be able to receive, transmit, and process 

information. The functional hierarchy for the communicate function is shown in Figure 

16. 

 
Figure 16.  Functional Hierarchy for F.2 Communicate 

c. Move 

As a maneuver force, the SOS needs to be able to move. In order to move, each 

constituent unit within the SOS needs to be able to start, stop, and change direction. In 

addition, maneuver forces may need to operate in all kinds of terrain. Hence, the 

constituent units need to be able to climb (e.g., slopes), and possibly swim in water. The 

functional hierarchy for the Move function is shown in Figure 17. 
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Figure 17.  Functional Hierarchy for F.3 Move 

d. Mitigate Air Threat 

In order to defend the maneuver force formation against aerial threats, the MAD 

systems need to be able to engage the threat. The Mitigate Air Threat function could be 

further divided into launch, guide, and reload, as shown in Figure 18. The launch sub-

function enables the system to send damage propagators to the threat. Damage 

propagators refer to the physical entity that causes damage to the platform (e.g., aircraft, 

tank, or ship). Since the threat is a moving target, the damage propagators need to be 

guided in order to home in on the target. This capability increases the chances of 

achieving a target kill. The launch mechanism that sends the damage propagator towards 

the intended target may have storage capacity for limited quantities of damage 

propagators. Reloading may be required when damage propagators are expended. Storage 

may also be required for storing spare damage propagators prior to reloading. An analogy 

could be drawn to an assault rifle where the gun assembly is the launching mechanism 

that sends the bullet (damage propagator) towards the intended target. The gunner reloads 

by changing magazines (storage). 
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Figure 18.  Functional Hierarchy for F.4 Mitigate Air Threat 

e. Mitigate Ground Threat 

The sub-functions (termed function in the figures) for mitigating ground threat are 

generally similar to that for mitigating air threat. Such functional decompositions 

represent the generic functions as descriptors, but each use of these generic terms may 

actually be quite different in terms of performance(s) and quality. For example, launch is 

generically defined as sending the damage propagator on its way to the target. However, 

in mitigating air threat, the launch trajectory of the damage propagator is from surface to 

air. For mitigate ground threat, the launch trajectory of the damage propagator is from 

surface to surface. The required launch speeds to engage air and ground threats may also 

differ. There lies the difference in performance and quality. Nevertheless, the use of 

generic descriptors suffices for the purposes of characterizing the system. 

The Mitigate Ground Threat function is mainly performed by the GCVs. In order 

to engage the ground threat, the GCVs need to be able to launch damage propagators and 

guide them to the threat. The reload and storage functions are similarly required as in the 

case for F.4 Mitigate Air Threat. The four sub-functions for F.4 Mitigate Air Threat are 

thus reused for F.5 Mitigate Ground Threat. 

In addition to the sub-functions in Figure 18, an added sub-function is required to 

mitigate ground threat. Increased survivability is dependent on reducing susceptibility 

and vulnerability. Due to the nature of surface-to-surface warfare, there is less focus on 

reducing susceptibility as compared to vulnerability. Being able to withstand damage 
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from damage propagators of ground threats reduce the vulnerability of GCVs, thereby 

increasing survivability of the GCVs. The functional hierarchy for the Mitigate Ground 

Threat function is shown in Figure 19. 

 
Figure 19.  Functional Hierarchy for F.5 Mitigate Ground Threat 

f. Provide Power 

Modern weapon systems require significant power to operate. There no longer 

exists a purely mechanical weapon of war. Each system needs to be able to generate the 

required power for onboard systems to operate. In addition, if power generation could not 

be continuous, there may be a need to store the generated power for use at a later time 

when power generation is not ongoing or insufficient. Since there are many different 

subsystems onboard, there is also a need for power distribution sub-function to ensure the 

right power is provided to the different sub-systems. The functional hierarchy of Provide 

Power function is shown in Figure 20. 

 
Figure 20.  Functional Hierarchy for F.6 Provide Power 
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F. MAPPING OF OPERATIONAL ACTIVITY TO FUNCTION  

Operational activities are implemented by functions. A mapping of operational 

activity to function is carried out to ensure all functions that are required to perform the 

operational activities have been identified. Figure 21 shows the mapping of OA.1 

Monitor Environment to F.1 Maintain Situational Awareness, F.2 Communicate, F.3 

Move, and F.6 Provide Power. The ability to detect potential threats is necessary to 

monitor the environment. The sub-functions of detect, track, and identity under F.1 

Maintain Situational Awareness are thus essential. Once potential threats are detected, 

threat information has to be disseminated to the entire formation so as to level up the 

overall situational awareness. F.2 Communication enables the dissemination of 

information be it via audio, video, or data linkages. The monitoring of the environment 

has to be conducted while the formation is moving. If the formation has to stop in order 

to survey the environment, it results in a less than ideal situation where the formation is 

not protected during movement. The F.3 Move function working in conjunction with F.1 

Maintain Situational Awareness enables monitoring of the environment while on the 

move. In order to maintain situational awareness, communicate and move, power is 

needed, and is provided by F.6 Provide Power function. 

 
Figure 21.  Mapping of OA.1 Monitor Environment to Functions 

Functions F.2 Communicate, F.3 Move, and F.6 provide Power implements OA.2 

Move to Objective, as shown in Figure 22. The formation may need to traverse different 

terrains while moving to the objective. F.3 Move comprises sub-functions that enable the 
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formation to start, stop, change direction, climb over hills or swim across bodies of water. 

During movement, there is a need to communicate with each other. For example, if some 

units are moving too fast or slow, communication is necessary to get the units to adjust to 

the correct speeds. The F.6 Provide Power function provides the power necessary for the 

onboard systems to operate. 

 
Figure 22.  Mapping of OA.2 Move to Objective to Functions 

Functions F.1 Maintain Situational Awareness, F.2 Communicate, F.3 Move, F.4 

Mitigate Air Threat, and F.6 Provide Power implement OA.3 Perform Air Defense as 

shown in Figure 15. As illustrated in Figure 23, OA.3 Perform Air Defense is triggered 

when F.1 Maintain Situational Awareness detects a potential air threat. Consequently, F.1 

Maintain Situational Awareness is needed to continue to track and identify the threat, in 

addition to detecting new threats. The location of the threat is constantly disseminated to 

the rest of the formation via F.2 Communicate, especially to MAD systems that are 

assigned to perform OA.3 Perform Air Defense. The formation needs to move via F.3 

Move when air defense is performed. Movement could be tactical to scatter the GCVs 

around the MAD systems forming an all-round air defense and preventing the air threat 

from having a clear target. The MAD systems may also need to move into a better 

position to implement F.4 Mitigate Air Threat. In addition, if the formation is able to 

maintain movement while performing air defense, the survivability of the formation is 

increased. Performing air defense reduces susceptibility via threat suppression. Moving 

away from the air threat reduces susceptibility by lowering the probability of an 

engagement, as the air threat may need to reposition prior to launching a damage 
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propagator. Ball (2003) defines the commencement of the engagement phase from the 

moment a damage propagator is launched towards the target (in this case the formation). 

In performing air defense, F.4 Mitigate Air Threat is arguably the main function. The 

launch, guide, reload, and store sub-functions enable the MAD systems to suppress the 

air threat. F.6 Provide Power is needed to operate systems including sensors, 

communication equipment, data links, weapon system, and platform. 

 
Figure 23.  Mapping of OA.3 Perform Air Defense to Functions 

Functions F.1 Maintain Situational Awareness, F.2 Communicate, F.3 Move, F.5 

Mitigate Ground Threat, and F.6 Provide Power implement OA.4 Perform Ground 

Defense as shown in Figure 24. Similar to OA.3 Perform Air Defense, OA.4 Perform 

Ground Defense is triggered when F.1 Maintain Situational Awareness detects a potential 

ground threat. With respect to OA.4 Perform Ground Defense, F.3 Move is needed for 

tactical movement to engage the ground threat. F.3 Move also allows the formation to 

maneuver such that the MAD systems are protected from the ground threat by the GCVs. 

F.5 Mitigate Ground Threat comprises the sub-functions launch, guide, reload, store and 

withstand ground threat. The sub-functions enable the GCVs to engage the ground 

threats. Due to the nature of surface-to-surface engagement, an additional sub-function 

withstand ground threat is needed to increase survivability via reducing vulnerability. 
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Figure 24.  Mapping of OA.4 Perform Ground Defense to Functions 

Functions F.1 Maintain Situational Awareness, F.2 Communicate, F.3 Move, F.4 

Mitigate Air Threat, and F.6 Provide Power implement OA.5 Set Up Local Air Defense 

as shown in Figure 25. OA.5 Set Up Local Air Defense is similar to OA.3 Perform Air 

Defense. However, this is operational activity is executed when the formation has 

reached the objective location. The intent is to have all-round air defense while the GCVs 

assault the objective. In this operational activity, F.3 Move would be more applicable for 

the MAD systems to move to suitable locations in order to establish all-round air defense 

versus for tactical movement.  

 
Figure 25.  Mapping of OA.5 Set Up Local Air Defense to Functions 

Functions F.2 Communicate, F.3 Move, F.4 Mitigate Air Threat, and F.6 Provide 

Power implement OA.6 Assault Objective as shown in Figure 26. While assaulting the 

objective, F.2 Communicate enables the GCVs to communicate with the formation to 
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coordinate assault efforts and to avoid potential fratricide. The GCVs also need to move 

to assault the objective (e.g., to be in proximity to different SAM sites in the objective 

area). F.4 Mitigate Air Threat is referenced here in view of the relevant sub-functions of 

launch, guide, reload and store. As discussed earlier, functions for the purpose of 

modeling are generic descriptors with quite different performances and quality. F.6 

Provide Power is needed to operate systems including communication equipment, data 

links, weapon system, and platform. 

 

Figure 26.  Mapping of OA.6 Assault Objective to Functions  

Table 3 shows a summary of the mapping of all functions needed by the 

maneuver force formation to implement the operational activities to achieve an offensive 

maneuver.  
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Table 3. Mapping of Operational Activities to Fllllctions 

Operational Activity Implemented by 
OA.l Monitor Environment F.l Maintain Situational Awareness 

F.2 Commllllicate 
F.3 Move 
F.6 Provide Power 

OA.2 Move to Objective F.2 Commllllicate 
F.3 Move 
F.6 Provide Power 

OA.3 Perf01m Air Defense F.l Maintain Situational Awareness 
F.2 Commllllicate 
F.3 Move 
F.4 Mitigate Air Threat 
F.6 Provide Power 

OA.4 Perf01m Grolllld Defense F.l Maintain Situational Awareness 
F.2 Connnllllicate 
F.3 Move 
F.5 Mitigate Grolllld Threat 
F.6 Provide Power 

OA.5 Setup Local Air Defense F.l Maintain Situational Awareness 
F.2 Commllllicate 
F.3 Move 
F.4 Mitigate Air Tln·eat 
F.6 Provide Power 

OA.6 Assault Objective F.2 Commllllicate 
F.3 Move 
F.4 Mitigate Air Tln·eat 

The above functions are already evident in cunent mobile air defense systems, for 

example, the Avenger. The gap that leads to requirements is typified by fimctional 

peifonnances and qualities. Take for example the F.3 Move function. The Avenger 

system is able to move. It has the ability to perf01m most sub-functions llllder F.3 Move, 

that is, strut, stop, change direction, and climb. It does not have the ability to really swim, 

but it can traverse tln·ough large puddles of water. The perf01mance of the swim fimction 

of the Avenger is thus of a lower level than that of the M6 Linebacker, which is fully 

amphibious. With regard to the climb sub-fimction, the Avenger would be able to climb a 

lesser slope than the M6 Linebacker on lmdulating ten ain. Comparing the Avenger or the 

M6 Linebacker with gooners operating MANP ADS, it is evident that the quality of 

function F.2 Coillllllmicate is of different levels. The Avenger and M6 Linebacker are 
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designed to operate with target information input from Sentinel radars. Such a networked 

architecture allows for faster communication between detection and engagement of the 

air threat. In comparison, the gunner operating a MANPADS would have to manually 

scan the sky for air threats or rely on the verbal information from observers. So while the 

F.2 Communicate function exists when operating the Avenger, M6 Linebacker or 

MANPADS, the quality of communication could be markedly different. There lies the 

gap in performance and quality of functions (and sub-functions) that leads to 

requirements. 

G. PHYSICAL ARCHITECTURE 

Operational activities are implemented by functions, which are in turn performed 

by components. While there was benefit to conduct operational activity and function 

analysis at the SOS level, the physical architecture concerned is the system that is going 

to be acquired. Consequently, only the MAD system is addressed with respect to the 

components and physical architecture. 

During design, there could be alternative components capable of performing the 

required functions. The main concern is regarding components that would likely have a 

major impact on the overall system design. Such components are identified for further 

analysis. Conversely, components that were unlikely to have a major impact on the 

overall system design (e.g., a battery for storing power) would be allocated to the subject 

matter experts (SMEs) who would be better suited to design or source for a component to 

suit system needs. 

1. Allocated Components 

Table 4 shows the allocated components for the MAD System. These components 

are unlikely to impact overall system design significantly and are allocated to SMEs for 

assessing the most suitable physical configuration. 
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Table 4 . Allocated Components for MAD System 

Functions Performed by 
F. l Maintain Situational Awareness 
F.l.l Detect 

Sensor 
F.1.2 Track 
F.1.3 Identify Allocated to SME 
F.2 Communicate 
F.2.1 Process Infonnation 
F.2.2 Receive Infonnation Allocated to SME 
F.2.3 Transmit Infonnation 
F.3 Move 
F.3.1 Strui 
F.3.2 Stop 
F.3.3 Change Direction Platfonn 
F.3.4 Climb 
F.3.5 Swim 
F .4 Mitigate Air Threat 
F.4.1 Lalmch 
F.4.2 Guide 

Weapon 
F.4.3 Reload 
F.4.4 Store 
F.5 Mitigate Ground Threat 
F.4.1 Lalmch 
F.4.2 Guide 

Allocated to GCV s 
F.4.3 Reload 
F.4.4 Store 
F.5.1 Withstand Ground Threat Platfonn 
F.6 Provide Power 
F.6.1 Generate Power 
F.6.2 Store Power Allocated to SME 
F.6.3 Disu·ibute Power 

a. F.l.l Identify 

Identification functions in existing MAD systems are commonly fulfilled by an 

Identification of Friend or Foe (IFF) component. The proposed component to be used has 

to be compatible with cmTent IFFs in invent01y; for exrunple, Russian IFFs would not 

work with NATO IFFs in view of differences in political associations and the need to 

safeguard national security. However, the selection of IFFs does not have a major impact 
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on the overall system design. The IFF is often a relatively small component and does not 

affect the main functioning of the system. 

b. F.2 Communicate 

The aim of the Communicate function is to transmit, receive and process 

information. The type of communication component used—high, very high, or ultra- high 

frequency—is unlikely to affect the overall system design significantly. The SME has to 

ensure that receive and transmit stations are wired with compatible cables. 

c. F.5 Mitigate Ground Threat 

With regard to the MAD system, the engagement portion of the Mitigate Ground 

Threat function (i.e., launch, guide, reload, and store) are allocated to the GCVs. 

d. F.6 Provide Power 

Modern weapon systems need power to operate. However, power generation 

systems are also common and commercially available. If there is a platform, power is 

typically generated by the platform and stored in a battery or capacitor. Power 

distribution is commonly achieved via a power distribution bus. The SME has to conduct 

electrical load analysis to ensure all components are specified to suitable electrical 

loadings. While batteries could be physically significant depending on the storage 

capacity required, it is a space consideration and does not affect overall system design 

significantly. If necessary, space allocation could be further addressed during system 

design reviews and trade off analysis. 

2. Non-Allocated Components 

The MAD system is envisaged to comprise three main high-level assemblies. The 

non-allocated components would fall under one of these three high-level assemblies, 

namely, sensor, weapon, and platform. In the author’s opinion and according to systems 

engineering best practices for design, component decomposition to two levels is 

sufficient (Buede 2009). There is little value in further decomposing the high-level 

assemblies to lower level components at this juncture as this thesis is focused on the 
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identification of significant design factors for the MAD system. In a real-life acquisition 

program, upon identifying the significant design factors, the type of physical components 

and possible altematives in implementing the required ftmctions could then be explored. 

There are many techniques that aid the exploration of altemative components. One useftll 

technique is the m01phological analysis technique developed by Fritz Zwicky (1969) for 

examining multi-parameter relationships in complex problems. The main pmpose of the 

systems engineering process up till this point is to demonsu·ate the systematic and 

interlinked process from stakeholder needs to identifying physical components. Table 5 

shows the mapping of ftmctions to high-level assemblies, thus ensuring that all ftmctions 

are indeed addressed and perf01med by a component or sub-assembly within the high­

level assembly. The next step would be to identify measures to evaluate the perfonnance 

of the MAD system. 

Table 5. Mapping ofFunctions to Components 

Flmctions Perf01med by 
F.1 Maintain Situational Awareness Sensor 

F.2 Communicate Platfonn 

F.3 Move Platfonn 

F.4 Mitigate Air Threat Weapon 

F.5 Mitigate Ground Threat Weapon 

F.6 Provide Power Platfonn 

H. MEASURES 

Measures are the independent variables that are reference points from which other 

items can be evaluated (Langford 2012). Measures of merit (MOMs) and perf01mances 

(MOPs) are used in this thesis. Measures of effectiveness (MOEs) are discussed to 

distinguish from MOMs and in relation to MOPs for completeness. 
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MOEs are required by potential users to ascertain whether the product or service, 

decision or judgment, plan or outcome, technology or engineering is good for a purpose 

(Langford 2014). Therefore, an MOE represents the category of factors that influence the 

consequences of a function that results in mission outcome. On the other hand, an MOM 

represents the category of factors that influence the processes for achieving the likelihood 

of mission success. An MOE is differentiated from an MOM in that it is related to 

functions and consequence while an MOM is related to processes and likelihood. The 

Defense Acquisition University (2012) defines an MOP as system-particular performance 

parameter, for example, speed, payload, range, time-on-station, frequency, or other 

distinctly quantifiable performance features. MOPs are related to functions; several 

MOPs could be aggregated into an MOE. Each function results from interactions between 

the two or more physical objects from which at least one measure of performance is 

associated with that function (Langford 2012). The distinction of process (as related to 

MOMs) and functions (as related to MOPs) is fundamental to the mereology of objects 

and processes (Langford 2012). 

Langford (2014) proposed an integrative framework for determining measures. 

Figure 27 shows the integrative framework, which considers interactions between the 

objective frame and subjective frame. 

 
Figure 27.  Integrative Framework (from Langford 2012, 88) 
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Langford (2014) provides the following description of the integrative framework. 

The arrows illustrate the sequencing of the interactions between the objects (objective 

frame) and the processes (subjective frame). This interplay begins with cognitive 

structures, progressing from subjective item to one objective item, then moving on to the 

next subjective item, from left to right. The perspective of management begins with the 

subjective frame with focus on the social and management issues (cognition, procedures, 

and models). From a technology perspective, the discussion often focuses on the 

objective frame. There are nine cardinal points within the framework, each resulting from 

the nexus of an item in one frame intersecting with an item in the other frame. These nine 

cross-frame intersections of the integrative framework are the nine domains of the 

measures. 

The use of the integrative framework allows project objectives to be fulfilled. 

Figure 28 shows the potential measures determined from the interaction between 

processes and objects. 

 
Figure 28.  Integrative Framework—Nexus of Processes and Objects (from 

Langford 2012, 89) 
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In determining measures for the MAD system, the user behaviors associated with 

the MAD system are assumed to be perfect; for example, the stakeholders took the right 

decision in making the MAD system available to the maneuver force formation for 

protection from aerial threats. The top row of Figure 28 is thus excluded from further 

consideration.  

The second row of Figure 28 is associated with the functions of the MAD system, 

which are also the main considerations for this thesis. In the second row, there are three 

categories for potential measures. As validated models to represent the functional 

performance of the MAD system are currently unavailable, this category is also excluded 

from further consideration. The remaining categories are the interaction of abstractions 

and reasoning; and interaction of mechanism, procedures, and activities with functions of 

the MAD system. From these two categories, the overall MOE is determined as the 

neutralization of adversary SAMs. The maneuver force helps the war cause by 

neutralizing the adversary SAMs, thus enabling the friendly air forces to conduct their 

missions to secure key areas. The maneuver force formation needs to survive (to a certain 

extent, notwithstanding expected attrition that does not affect the capability to complete 

the mission) in order to execute the mission. Survivability is a process and contributes to 

the likelihood of mission success. Survivability of the maneuver force formation 

(including the MAD system) is thus determined as an MOM. Both the MOE and MOM 

would be valid when viewing the maneuver force formation as an SOS. With regard to 

the MAD system, the MOM of survivability of the maneuver force formation is more 

relevant and thus adopted as the performance measure for the MAD system. 

In functional decomposition, it is not uncommon for functions and processes to be 

considered together as in the case of the functional decomposition tool IDEF0 (Integrated 

Computer Aided Manufacturing Definition for Function Modeling) illustrated in Buede 

(2009). In this thesis, the author differentiates functions from processes but presents them 

in a combined table for ease of reference. Table 6 illustrates the MOMs and MOPs 

identified relating to the functions derived from functional decomposition conducted in 

previous sections. Although functions F.2 Communicate and F.6 Provide power are 

performed by components which have been allocated to the SMEs for design, the MOPs 
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for these two ftmctions are included in Table 6 for completeness. The list of identified 

MOMs and MOPs is not exhaustive and may be amended according to the threat, 

operations concept, and environment. 

Table 6. Measures of Merit and Perf01mance for MAD System 

Functions MOM/MOP 

Maintain Situational 
MOP.l.l Range of detection 

F. I MOP.1.2 Platfonn speed during scan 
Awareness 

MOM.1.3 Number of intelligence sources 
MOP.2.1 Bandwidth 

F.2 Communicate MOP.2.2 Receive and transmit speed 
MOP.2.3 Processing speed 

F.3 Move 
MOP.3.1 Platfonn speed on road 
MOP.3.2 Platfonn cross-country speed 
MOP.4.1 Range of engagement 

F.4 Mitigate Air Threat 
MOP.4.2 Exposure time 
MOP.4.3 Coverage angle 
MOP.4.4 Platfonn speed during engagement 
MOM.5.1 Ability to withstand up to 30 mm 

F.5 Mitigate Ground Threat 
gunfire 

MOM.5.2 Ability to withstand one 120 mm 
round direct hit 

MOP.6.1 Power storage capacity 

F.6 Provide Power 
MOP.6.2 Peak and average power 
MOP.6.3 Percentage of equipment operating 

concunently 

1. Measures for F.l Maintain Situational Awar eness 

a. MOP.J.l Range of Detection 

Four MOPs were identified for F.l Maintain Situational Awareness. In 

maintaining situational awareness, a longer range of detection may allow more reaction 

time to dete1m ine the most suitable reaction plan, for example; the f01mation could fonn 

into a defensive configuration and wait for the air threat to be within range. Conversely, a 

shorter detection range may result in late detection and less time for reaction against the 

air threat. 
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b. MOP.1.2 Platform Speed during Scan 

The MAD systems provide aerial protection to the GCVs in the maneuver 

formation. If the MAD systems have to stop or slow down when scanning for air threats, 

the GCVs will need to slow down as well in order to remain protected from aerial threats, 

and protect the MAD systems from ground threats. This mode of operation thus results in 

a longer overall exposure time of the maneuver formation to potential threats and extends 

the time of the mission. The faster the formation speed the more advantageous for 

survivability of the maneuver formation. 

c. MOM.1.3 Number of Intelligence Sources 

The greater the number of intelligence sources the MAD system could tap from, 

the better the chances of detecting a threat. Different types of sensors have different 

advantages; for example, long-range radars can scan a longer range but may lose 

resolution at shorter ranges. The ability to resolve the threat information from various 

sensors will be advantageous. Such a networked and resolved air picture may come at the 

expense of longer processing time in order to merge the threat information from multiple 

intelligence sources. 

2. Measures for F.3 Move 

The main consideration for platform would be speed. Maneuver missions are time 

critical. The longer the mission time, the longer the exposure time, and the lower the 

chances of success. The types of surfaces maneuver forces likely need to travel on are 

between paved roads and cross-country. The speed of the MAD system traveling on 

paved road and cross-country terrain would be a suitable measure of the performance of 

the Move function. 

3. Measures for F.4 Mitigate Air Threat 

Measures of performances were identified to measure the performance of F.4 

Mitigate Air Threat function. Four MOPs were identified, namely, range of engagement, 

exposure time, coverage angle, and platform speed during engagement. 
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a. MOP.4.1 Range of Engagement 

The range of engagement could be critical in certain operating environments. In 

open and flat areas, the advantage of a long range of engagement is immense. If the range 

of engagement of the MAD system is longer than that of the air threat, the MAD system 

could be engaging the air threat while having no chance of being killed. However, in 

closed terrain (e.g., forest and urban operating environments), the impact of a long range 

of engagement is largely discounted. Take for example an urban environment where the 

MAD system has already detected and identified an air threat that is within engagement 

range. However, there is a building blocking the line of attack. In this case the longer 

engagement range of the MAD system does not translate to any operational advantage. 

b. MOP.4.2 Exposure Time 

Exposure time is referred to as the time after shooting a round or firing a missile 

at the air threat before being able to take evasive actions. As discussed earlier, the speed 

of the platform when scanning for air threats affects the exposure time. The operating 

characteristics of weapon systems may also affect the exposure time. Take, for example, 

surface-to-air missiles that are commonly used to defend against air threats. If the missile 

is a CLOS system, upon completion of providing the launch signal (e.g., a complete 

squeeze of the trigger) the operator and the MAD system likely need to remain in the 

current position in order to provide a steady guidance for the missile. Conversely, if the 

missile is a FNF system, the MAD system is now free to take evasive maneuvers and 

actions upon completion of providing the launch signal. Infrared seekers that home in on 

infrared signatures (e.g., aircraft exhaust) passively are commonly used in FNF missiles. 

When operating such FNF missiles, there is no requirement for operator guidance during 

missile maneuver.  

c. MOP.4.3 Coverage Angle 

The term “cover my six” is military jargon for looking out for threats behind 

fellow friendly forces. Similarly, weapon systems are susceptible when attacked from an 

unexpected angle. In maneuver operations, the air threat could potentially be from any 

angle. The launch characteristics of weapon systems could affect the reaction time if the 
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air threat is approaching from an angle that is not covered. There are two generic types of 

weapon system launch mechanisms, namely, oblique- and vertical-launched. Weapon 

systems that launch obliquely are generally slower to react. The weapon system needs to 

be slewed to the general direction of the air threat before launch. However, the time of 

travel for the damage propagator (i.e., missiles) is generally shorter as it travels in a direct 

path. Comparatively, vertical-launched systems are not constrained to any particular 

launch direction. They are normally launched vertically upwards before turning to the 

direction of the air threat. Vertical-launched systems react faster as they could be 

launched without slewing to the direction of the air threat. However, due to the trajectory 

shaping, the missile takes an indirect path that may lead to a longer time of travel.  

d. MOP.4.4 Platform Speed during Engagement 

Similar to MOP.1.2 Platform Speed during Scan, if the MAD systems have to 

stop or slow down when engaging air threats, the GCVs will need to slow down as well. 

Such operation modes would result in a longer overall exposure time of the maneuver 

formation to potential threats and also extends the time of the mission. The faster the 

formation speed the more advantageous for survivability of the maneuver formation. 

4. Measures for F.5 Mitigate Ground Threat 

The mitigation of ground threat is a process; MOMs are related to processes. Two 

MOMs are identified to measure the Mitigate Ground Threat process. 

a. MOM.5.1 Ability to Withstand up to 30 mm Gunfire 

With the exception of main battle tanks, 30 mm is generally the largest caliber for 

ground vehicle weapon systems (Department of the Army 2011a). The MAD system 

should be able to withstand gunfire from such common ground threats. Such a defensive 

capability would enable the GCVs to focus on neutralizing more significant ground 

threats, leading to higher overall formation survivability. 
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b. MOM.5.2 Ability to Withstand One 120 mm Projectile Direct Hit 

It is reasonable to assume that adversary main battle tanks would target the MAD 

systems. Once the MAD systems are killed, the GCVs would be susceptible to aerial 

threats. Hence, the MAD systems should be able to withstand at least one direct hit from 

the main gun of the adversary main battle tank, currently assumed to be a 120 mm caliber 

equivalent. The three pillars of ground vehicle design are generally known to be armor, 

firepower, and speed. It is not practical to expect the MAD systems to have sufficient 

armor to withstand repeated hits from adversary main battle tanks. More armor would 

lead to reduced traveling speeds and possibly less weight allocation to the air defense 

weapon system. 

5. Summary 

Through the use of the systems engineering process, the study has proceeded in a 

systematic, interlinked, and iterative manner originating from capability needs to the 

definition of operational concept, followed by the determination of operational activities 

required to achieve the mission objective, and the derivation of required functions to 

implement the operational activities. The systems engineering process has now reached a 

juncture where there are many possible alternatives that could fulfill the physical 

architecture in performing the required functions. In addition, these alternatives may 

change depending on the operating scenario. In the next chapter, the use of design of 

experiment to aid the selection of physical architecture best suited for different scenarios 

will be discussed. 
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IV. DESIGN OF EXPERIMENT 

In Chapter III, the systems engineering process enabled the systematic 

decomposition of capabilities into operational activities, functions and components. 

Measures of merit and performances were established. Each measure could be set at 

different performance levels. Assessing each permutation and combination of the 

measures would be onerous and likely to be inefficient. A DOE is utilized to identify the 

significant measures expeditiously. In a DOE, the main components are the layout of the 

experiment, signal factors and associated levels, noise factors, and the corresponding 

response of each experimental run. The following sections discuss the factors included 

for the DOE, type of DOE used, and the assigning of significance to response of each run 

in lieu of availability of combat data. 

A. SIGNAL FACTORS 

Signal factors are factors that can be controlled by the designer or engineer. The 

factors under consideration and the associated levels are first determined. In this thesis, 

the factors are restricted to two or three levels. The factors to be considered comprise 

mainly the MOMs and MOPs for the MAD system that are expected to exert significant 

influence on the overall design of the system. Other factors could also be included if 

assessed to be significant in system design. The systems engineering process provides a 

systematic and holistic approach to generate the require components. It does not constrain 

system engineers or program managers to adhere strictly to the functions and components 

generated by the process. Any additional areas of concerns could be included for 

analysis. For maneuver forces, one of the main concerns highlighted would be 

survivability. The maneuver force formation needs to be survivable in order to 

accomplish the assault mission. Being susceptible to aerial threats, GCVs depend on 

MAD systems to protect them, making them more survivable. Consequently, the MAD 

systems also need to be survivable in order to protect the GCVs, thereby allowing the 

GCVs to accomplish the mission. One of the techniques to increase survivability is via 

reduction of vulnerability (Ball 2003). Having critical component redundancy with 
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effective separation (when one critical component is hit, the redlmdant critical component 

would not be affected by collateral damage) can in tum reduce vulnerability. The overall 

survivability of the maneuver fonnation was identified as an MOM. Having redundancy 

for critical components in the MAD systems would contribute to the overall survivability 

of the maneuver fonnation. Consequently, having redundancy of critical components has 

been included as two-level factors for sensor and weapon. Table 7 shows the selected 

factors with the associated levels. MOMs represent the contribution of processes to the 

factors in the DOE, whereas, MOPs represent the functional perf01mances due to the 

functional requirements (Langford 2012). 

Table 7. Factors for Design of Experiment 

Factors Level 
MOP.1.1 Range of detection Shott Medium Long 
MOP.1.2 Platf01m speed during scan Slow Fast -
MOM.1.3 Number of intelligence sources One Two > Three 
MOM.1.4 Sensor redlmdancy Yes No -
MOP.3.1 Platf01m speed on road Slow Fast -
MOP.3.2 Platf01m cross-cmmtry speed Slow Fast -
MOP.4.1 Range of engagement Shott Medium Long 
MOP.4.2 Exposure time Short Long -
MOP.4.3 Coverage angle < 180° > 180° -
MOP.4.4 Platf01m speed during engagement Slow Fast -
MOM.4.5 Weapon redundancy Yes No -
MOM.5.1 Ability to withstand up to 30 mm gunfire Yes No -
MOM.5.2 Ability to withstand one 120 mm round 

Yes No 
direct hit 

-

1. Three-Level Factors 

From Table 5, there are three three-levels factors namely, detection range, number 

of intelligence sources, and engagement range. For detection and engagement ranges, 

there is a broad spread with the lower limit at about three to four kilometers and the upper 

limit possibly up to 15 kilometers onwards. Associating ranges with two levels (i.e., sh01t 

or long) would not provide the kind of resolution that would be useful in influencing the 

system design. If the entire range is simply divided by half, the "sh01t" level could range 

from three to eight kilometers. This association does not provide any distinction between 
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VSHORAD and SHORAD ranges. A three-level association thus allows a better 

resolution. As mentioned previously, the indicative states of short, medium, and long are 

used due to the lack of data. During an actual acquisition program where data is 

available, the indicative states could be replaced with discrete range values. 

Using a similar thought process in associating levels for ranges, the number of 

intelligence sources is proposed to be associated with three levels, namely, one, two, and 

three or more. Having one intelligence source is quite the norm and most sensors would 

fall into this category. Assuming different kinds of sensors and with proper system 

integration, two intelligence sources should have a significant impact on providing better 

situational awareness. The benefits of increasing the number of intelligence sources 

follow the law of diminishing returns; that is, with each additional intelligence source, the 

benefit increases by a lower amount. Hence, the author deems it sufficient to have 

resolution between one, two, and three or more intelligence sources. 

2. Two-Level Factors 

Two-level factors are essentially “yes” or “no” states. Most of the factors fall 

under this category. In determining the platform speeds when traveling on road, cross-

country, during scan, and during engagement, the main consideration is with respect to 

the GCVs. As the mission of the MAD system is to protect the GCVs, MAD systems are 

unlikely to be traveling significantly faster than GCVs. The main consideration is often 

whether the MAD systems are traveling at slower or comparable speeds to the GCVs, 

thus resulting in the two-level association for factors related to platform speeds. 

The exposure time factor is associated with two-levels, short and long. The main 

consideration is usually whether the platform could engage in evasive maneuvers 

immediately upon engagement as in the case of an infrared passive homing FNF system. 

Hence, only two levels are associated with the exposure time factor. 

Most directional weapon systems (oblique-launched) are capable of covering at 

least 180 degrees. The other class of weapon systems would be the vertical-launched 

systems that are capable of all round coverage with the possible exception of certain 

small angle(s) due to system limitations and/or physical blockages. Hence, an angle-by-
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angle analysis may be overindulgent. A two-level association for the coverage angle 

factor is assessed to be sufficient. 

With regard to withstanding grmmd threat(s), the main consideration is whether 

the MAD system could withstand threats from generic grmmd threats and main battle 

tanks. Generic ground threats n01mally have annament up to 30 mm caliber guns; main 

battle tanks could have main guns of up to 120 mm caliber. A two-level association for 

each factor is sufficient to indicate the smvivability of the MAD system against generic 

ground threats and main battle tanks. 

B. EXPERIMENT DESIGN 

This section discusses the considerations in the selection of experiment design. 

Common experiment designs include full factorial, where eve1y possible combination is 

addressed, and optimized designs that allow fewer experiments to be conducted. 

1. Full Factorial 

When designing a simple experiment, the most straightf01ward method would be 

to consider all pe1mutations and combinations. In statistics, this is known as the full 

factorial design. Each pennutation or combination is known as a nm. However, as the 

number of factors increases, the number of runs required increases very rapidly. Table 8 

shows the number of 1uns required for a two-level full factorial (i.e., each factor can only 

have two different levels or values). With a three times increase (from two to six) in 

number of factors, the required number of 1uns increase by 16 times (from fom to 64) . 

Table 8. Number of Runs Required for a 2k Full Factorial (fi:om National 
Institute of Standards and Technology [NIST]/Semiconductor 

Manufactming Technology [SEMATECH] 2012) 

Number of Factors Number of Runs 
2 4 
3 8 
4 16 
5 32 
6 64 
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If each factor had three levels, then the number of nms required becomes 

ove1w helmingly large ve1y soon. Table 9 illustrates the number of 1uns required for a 

three-level full factorial (i.e., each factor can have three different levels or values). With a 

similar three times increase (from two to six) in number of factors , the required number 

of 1uns increases by 81 times (from nine to 729). 

Table 9. Number ofRlms Required for a 3k Full Factorial (after 
NIST/SEMATECH 2012) 

Number of Factors Number of Runs 
2 9 
3 27 
4 81 
5 243 
6 729 

For the MAD system, there were 10 proposed factors at two levels, and three 

proposed factors at three levels. This configuration presented two issues in regard to the 

use of full factorial designs for the experiment. Firstly, there are two-level and three-level 

factors. This non-homogeneity meant that a single full factorial, such as, two-level or 

three-level, would not suffice. Assigning an additional level to two-level factors to 

standardize all factors into a three-level 13 factor full factorial would require 1,594,323 

1uns. Arbitrarily fixing all factors to two-levels was possible, but would have resulted in 

loss of resolution with regard to some factors that may affect the design of the MAD 

system. Assuming the loss of resolution was acceptable, minimizing the number of nms 

by setting only two-level factors would result in 13 two-level factors , and still requiring 

8,192 nms. Even with computers executing the experiment, significant computing 

resources, and time would be required. A more efficient method of assessing the 

significance of each factor at each level was thus needed. 

2. Taguchi's Orthogonal Array 

DOE is a statistical technique used to study the effects of multiple variables 

simultaneously (Roy 2001). The following introduction on DOE and orthogonal arrays 

are provided in (Taguchi, Chowdhmy, and Wu 2005). R.A. Fisher when researching on 
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methods of improving barley in agriculture first introduced DOE. Many including 

Japanese engineer Genichi Taguchi, researched DOE methods. Working upon the 

orthogonal an ay technique first introduced by Fisher, Taguchi proposed the use of level­

labeled 01i hogonal an ays, which are now refen ed to as Taguchi's orthogonal an ay. 

Fisher's o1i hogonal an ay focused on calculating factor-by-factor contributions of 

variability in product characteristics. Taguchi's 01ihogonal an ay focused on control 

factors that engineers had means to affect. While environmental condition or noise 

factors affect product characteristics there were no means to control them. 

A typical Taguchi's 01ihogonal an ay (Ls) for seven two-level factors is shown in 

Table 10. L refers to Latin square and the subscript eight refers to the number of 1uns. 

From the experiment design, the number of times each level (A or B), appears in each 

colunm is equal. A and B each appear four times in every column. Such a design ensures 

that each factor has an equal opp01iunity to influence the results (Roy 2001). Taguchi's 

01thogonal anay requires only eight experimental nms as compared to 128 nms if a full 

factorial design was used. fu 01i hogonal an ay design, having a resolution of three (e.g., 

Taguchi's 01ihogonal an ay) means that the main factors are confounded with interaction 

effects. Such designs are generally accepted and considered useful for the purpose of 

screening the effects of factors (NIST/SEMATECH 2012). 

Table 10. Taguchi's Ls 0 1i hogonal Anay (after Taguchi, Chowdhury, and 
Wu 2005) 

Factors 
Run A B c D E F 

1 1 1 1 1 1 1 
2 1 1 1 2 2 2 
3 1 2 2 1 1 2 
4 1 2 2 2 2 1 
5 2 1 2 1 2 1 
6 2 1 2 2 1 2 
7 2 2 1 1 2 2 
8 2 2 1 2 1 1 

G 
1 
2 
2 
1 
2 
1 
1 
2 

Taguchi's 01ihogonal an ay is well established and validated by many. Sedghi et 

al. (2014) used both a full factorial design and the Taguchi method for estimation of the 
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in vitro optimum intrinsic phytase activity of rye, wheat, and barley. The results using 

both methods were comparable. However, the Taguchi method required significantly 

lesser number of runs. 

Using Taguchi’s orthogonal array resolves the issue of having two-level and 

three-level factors by allowing a mixed array design. In addition, the required number of 

runs is minimized to a reasonable 36 runs. 

One of the advantages of using a DOE is that many statistical analysis software 

packages are now able to perform DOE automatically thus saving much time and effort. 

The software used in this thesis is JMP Pro 11, mainly due to prior experience of the 

author in using JMP Pro 11, and availability of the software package on the NPS campus. 

Table 11 shows Taguchi’s orthogonal array design (L36) for 10 two-level factors and 

three three-level factors in JMP Pro 11. The factors and corresponding data labels are 

provided in Table 12 for reference. 
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Table 11. Taguchi's L36 0 1ihogonal Anay Design in JMP Pro 11 

Rn Sspd Srdt Rspd Xspd Etim Cang Espd W1·dt W30 W120 Drug Erng Nint 
1 Slow Yes Slow Slow Shott Less Slow Yes Yes Yes Sh01t Short 1 
2 Slow Yes Slow Slow Shott Less Slow Yes Yes Yes Med Med 2 
3 Slow Yes Slow Slow Shott Less Slow Yes Yes Yes Long Long 3 
4 Fast Yes Fast Slow Shott Less Fast No No Yes Sh01t Short 1 
5 Fast Yes Fast Slow Shott Less Fast No No Yes Med Med 2 
6 Fast Yes Fast Slow Shott Less Fast No No Yes Long Long 3 
7 Fast No Slow Fast Shott Less Slow No No No Sh01t Short 2 
8 Fast No Slow Fast Shott Less Slow No No No Med Med 3 
9 Fast No Slow Fast Shott Less Slow No No No Long Long 1 
10 Slow No Fast Slow Long Less Slow Yes No No Sh01t Short 3 
11 Slow No Fast Slow Long Less Slow Yes No No Med Med 1 
12 Slow No Fast Slow Long Less Slow Yes No No Long Long 2 
13 Fast Yes Fast Fast Shott More Slow Yes Yes No Sh01t Med 3 
14 Fast Yes Fast Fast Shott More Slow Yes Yes No Med Long 1 
15 Fast Yes Fast Fast Shott More Slow Yes Yes No Long Short 2 
16 Fast No Slow Fast Long Less Fast Yes Yes Yes Sh01t Med 3 
17 Fast No Slow Fast Long Less Fast Yes Yes Yes Med Long 1 
18 Fast No Slow Fast Long Less Fast Yes Yes Yes Long Short 2 
19 Fast No Fast Slow Long More Slow No Yes Yes Sh01t Med 1 
20 Fast No Fast Slow Long More Slow No Yes Yes Med Long 2 
21 Fast No Fast Slow Long More Slow No Yes Yes Long Short 3 
22 Slow No Fast Fast Shott More Fast Yes No Yes Sh01t Med 2 
23 Slow No Fast Fast Shott More Fast Yes No Yes Med Long 3 
24 Slow No Fast Fast Shott More Fast Yes No Yes Long Short 1 
25 Slow Yes Fast Fast Long Less Fast No Yes No Sh01t Long 2 
26 Slow Yes Fast Fast Long Less Fast No Yes No Med Short 3 
27 Slow Yes Fast Fast Long Less Fast No Yes No Long Med 1 
28 Slow Yes Slow Fast Long More Slow No No Yes Sh01t Long 2 
29 Slow Yes Slow Fast Long More Slow No No Yes Med Short 3 
30 Slow Yes Slow Fast Long More Slow No No Yes Long Med 1 
31 Fast Yes Slow Slow Long More Fast Yes No No Sh01t Long 3 
32 Fast Yes Slow Slow Long More Fast Yes No No Med Short 1 
33 Fast Yes Slow Slow Long More Fast Yes No No Long Med 2 
34 Slow No Slow Slow Shott More Fast No Yes No Sh01t Long 1 
35 Slow No Slow Slow Shott More Fast No Yes No Med Short 2 
36 Slow No Slow Slow Shott More Fast No Yes No Long Med 3 
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Table 12. Factors and Data Label Mapping for JMP Pro 11 DOE Setup 

Factors Label Factors Label 
Range of detection Dmg Exposure time Etim 
Platf01m speed during scan Sspd Coverage angle Cang 
Number of intelligence sources Nint Platf01m speed during engagement Espd 
Sensor redlmdancy Srdt VVeaponredlilldancy VVrdt 
Platf01m speed on road Rspd Ability to withstand up to 30 mm VV30 

glmfire 
Platf01m cross-colillhy speed Xspd Ability to withstand one 120 mm VV120 

rolilld direct hit 
Range of engagement Emg 

C. SCENARIO DEVELOPMENT 

The previous section discussed the different levels associated with each factor that 

may influence the design of the MAD system. Each factor may affect the perf01mance of 

the MAD system differently in diverse environments. VVhile the environment is not a 

controllable factor, it does affect the system perfonnance, and should be considered as 

noise factor(s) during design. In this section, scenarios will be discussed to illustrate the 

differing impact of factors in regards to the peiformance of the MAD system. 

Mon ison and Mecca (1988) categorize scenarios into four distinct types, namely, 

the demonsu·ation scenario, the driving-force scenario, the system change scenario, and 

the slice-of-time scenario. The following descriptions of different types of scenarios are 

smnmarized from Monison and Mecca (1988). 

In the demonsu·ation scenario, a pruiicular end-state in the future is envisaged 

along with a path of detennining events leading to that end-state. Conespondingly, the 

decisions made at each dete1m ining event influence the end-state. The decisions made at 

these dete1mining events are the focus of the demonsu·ation scenru·io. 

In the driving-force scenario, key trends are first identified with different 

intensities, that is, low, medium, and high. The key u·ends are assumed to be constant 

throughout the scenario and with different intensities. Diverse versions of the future 

could thus be described. In this way, the driving-force scenario contrasts altemative 

futures with others in a similru· scenru·io space. Ce1iain policies may suit some of the 
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futures but create problems in others. The driving-force scenario thus allows decision-

makers to direct monitoring attention to potential problems. 

The system-change scenario explores interrelationships of a set of trend and event 

forecasts. This scenario type differs from the demonstration and driving-force scenarios 

in that there is no single event that will affect the scenario or assumed driving forces.  

The slice-of-time scenario takes a snapshot of a future period in time when certain 

conditions have progressed to a certain extent, for example, technology. A description of 

how stakeholders think, feel, and behave in that environment is provided. The objective is 

to compare the future to current state and assess if the future was more desirable, fearful 

or more attainable than generally thought. 

In defining the operating scenarios for the MAD system, the author uses the 

driving-force scenario with the threats to maneuver forces as the identified key trends. 

The intent is to compare the design decision of the MAD system in alternative futures. In 

an essay on scenario planning, Peterson, Cumming, and Carpenter (2003) stated that the 

appropriate number of scenarios is generally considered to be three or four. Two 

scenarios result in narrow thinking; whereas five or more scenarios may confuse users 

and limit their ability to explore uncertainty (Wack 1985; Schwartz 1991; van der 

Heijden 1996). Consequently, the author describes three scenarios where the MAD 

system operates in different terrain. 

The scenarios have to take into account the presence of threats to maneuver 

formation. The recent trend in regard to threats faced by the maneuver formation was 

discussed in Chapter II. The main identified threats were fixed wing aircraft, attack 

helicopters and UAVs/UCAVs. A rational adversary would employ forces based on the 

effectiveness and advantage(s) in that particular operating environment. Consequently, 

threat intensities may vary with different operating environments. Threat intensities refer 

to the number of assets deployed by the adversary to attack the maneuver formation. For 

the purpose of building the scenarios, threat intensity levels are mapped to three 

indicative states, that is, low, medium, and high. The generalized threat and intensity 

levels are shown in Table 13. Each scenario will have an assessed intensity for each 

 70 



threat. The assessed threat intensities build a reasonable scenario, which is representative 

of typical militmy missions. With better knowledge, combat experience, and data, the 

threat intensities could be better assessed. 

Table 13. Generalized Threat and Intensity Levels 

Threat Intensit: 
Fixed Wing Aircraft Low Med High 

Attach Helicopter Low Med High 
UAV/UCAV Low Med High 

1. Scenario One: Flat and Open 

The maneuver force may need to operate in different tenain depending on which 

region of the world or cmmtly the need for maneuver capability is required. The first 

envisaged scenario has flat and open tenain. This operating environment resembles a 

desert. In such an operating environment, there is no relief for cover and concealment. 

There is also little or no foliage. Conespondingly, there m·e also no physical blockages 

thus resulting in good visibility (assuming good weather). The u·aveling smface is 

relatively level but can be "soft" at times. 

Scenario One has flat and open ten ain. The lack of relief or foliage means that 

attack helicopters are unable to leverage on the cover provided by relief or foliage for 

low-level maneuvers. Hence, there is no advantage in deploying attack helicopters over 

fixed wing aircraft to attack maneuver f01mations in such an operating environment. The 

adversary would also be concemed about attrition of air assets. Without the advantage of 

avoiding detection using relief and foliage, the attack helicopter is slower than fixed wing 

aircraft, and would present an easier tm·get for anti-aircraft weapons. The author opines 

that in such a scenm·io the deployment of fixed wing aircraft for the attack of maneuver 

f01mations would be high while that of attack helicopters would be low. UAVs/UCAVs 

would be advantageous in this scenario due to the absence of flight crew, thus preventing 

human casualties. Being physically smaller in size, UAVs/UCAVs tend to be harder to 

detect. However, the payload of UCAVs may not be sufficient to neuu·alize a maneuver 

f01mation. UCA V s are likely to be used in moderation until more technological advances 
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are made. Since there is no significant advantage of using air assets in this scenario, the 

adversary may then deploy more grmmd assets to cmmter the maneuver f01mation. Such 

inter-relationships may affect the significant of factors of MAD systems, which will be 

discussed later in the chapter. The summarized threat and intensity levels for scenario one 

are shown in Table 14. 

Table 14. Threat Density for Scenario One 

Threat Intensity 
Fixed Wing Aircraft High 

Attack Helicopter Low 
UAVIUCAV Med 

2. Scenario Two: Some Relief 

The second envisaged scenario has some relief including hills, knolls, and 

winding tracks. There is also some foliage present. This operating environment resembles 

a sparse forest. In such an operating environment, the adversary threat could leverage on 

the presence of foliage and relief for cover and concealment. In addition, there may be 

physical blockages with regard to visibility and operation ranges of weapon(s) and 

sensor(s) . In this scenario, the surface that the maneuver f01m ation has to traverse upon is 

undulating. 

The threat of fixed wing aircraft is assessed to be low in this scenario taking into 

account aircraft radars may not fare well when transmitting through foliage. Hence, the 

adversary could opt to deploy attack helicopters that could leverage on cover and 

concealment before launching a smprise "pop-up" attack on the maneuver f01mation. 

UA V s/UCA V s are likely to be deployed as well due to lower probability of detection. 

Similar to attack helicopters, UA V s/UCA V s would be able to make use of the relief and 

foliage for cover and concealment. In view of UCA V cmTent payload capabilities, attack 

helicopters are assessed to be the threat of highest intensity. UAVs/UCAVs are assessed 

to be of medium intensity, as shown in Table 15. Due to attack helicopters and 

UA V s/UCA V s being able to leverage on the relief and foliage, the adversmy is likely to 

deploy more air assets as compm·ed to ground assets. 
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Table 15. Threat Density for Scenario Two 

Threat Intensity 
Fixed Wing Aircraft Low 

Attack Helicopter High 
UAVIUCAV Med 

3. Scenario Three: Urban Built-Up Area 

The third envisaged scenario is an urban built-up area. An urban built up area 

presents a significantly different operating environment for the maneuver force 

f01mation. The landscape comprises mainly buildings with relatively nan ow roads. 

Maneuverability may be limited for GCVs. Field of view is severely limited due to 

physical blockages by buildings. The tmveling surface is flat and mostly in the f01m of 

hard surfaces, such as, paved roads. 

In such a scenario where the maneuver f01mation is resu·icted in maneuverability, 

the adversary is likely to deploy fast moving air assets as opposed to main battle tanks, 

which may be restricted in maneuverability in an urban built-up area. Fixed wing aircraft 

are fast but if a building is blocking the line of attack, the aircraft has to make another 

pass, reducing the probability of engagement. On the other hand, attack helicopters have 

the ability to hover and make slight positional adjustments to get a clear line of attack. 

Attack helicopters would be most lethal in such a scenario; however, the adversmy would 

also be mindful of casualties. Attack helicopters m·e vulnerable to more threats in urban 

m·eas; for example, rocket propelled grenades typically have limited range to tm·get attack 

helicopters, but the presence of buildings extends the range of rocket propelled grenades. 

UAVs/UCAVs could serve a similm· fimction with many UAVs/UCAVs now able to 

hover. The author opines that attack helicopters would be deployed in moderation while 

UA V s/UCA V s would be deployed in higher intensities due to the absence of flight crew 

onboard. The threat and intensity levels for scenm·io three are shown in Table 16. 
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Table 16. Threat Density for Scenario Three 

Threat Intensity 
Fixed Wing Aircraft Low 

Attack Helicopter Med 
UAVIUCAV High 

D. NOISE FACTORS 

From the three scenarios discussed, the conu·ibuting effect of the environment 

could be categorized into two main noise factors. The first noise factor is the presence of 

blockages (relief and foliage), which is a ve1y significant factor by itself. The presence of 

blockages affects sensor and weapon ranges, indirectly detennining the time of reaction 

for the maneuver fonnation. The time of reaction in tum leads to other considerations; for 

example, with less time to react, the coverage angle of the weapon may be more 

significant as the crew may not have sufficient time to slew the weapon system to engage 

the threat. The second identified noise factor is the u·aveling surface. Undulating or 

difficult tenain (e.g., soft grmmd and steep slopes) makes the cross-countiy speed of the 

MAD system more significant. On the other hand, easy tenain like paved roads negates 

the usefulness of cross-cmmby capability. Similar to signal factors, noise levels are 

associated with levels. Each noise level is associated with two-levels-present or absent. 

E. RESPONSE: SURVIVABILITY OF THE MANEUVER FORCE 
FORMATION 

Much has been said about the impact of different factors on the perf01mance of 

the MAD system. However, one should keep in mind the objective of having a suitable 

MAD system. The aim is to defend the maneuver force f01mation against aerial threats, 

thus conu·ibuting to the overall smvivability of the f01mation. DOE requires a response in 

order to detennine if factors are significant. Consequently, the smvivability of the 

f01mation, which is also the MOM, is designated as the response of the DOE. For each 

1un with different factor levels, there would be a conesponding response. In this way, 

factors of the proposed MAD system that are significant in affecting the overall 

smvivability of the fonnation could be dete1mined. 
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1. Methods of Assigning Significance 

When dealing with systems in the conceptual stage, there is often a lack of data. 

In order to compare alternatives, weights may be assigned to attributes in order to 

facilitate comparison. The use of swing weights in multi-attribute decision-making is one 

method of analyzing the alternatives (Clemen and Terence 2001). This methodology 

involved assigning weights to attributes and normalizing them for a better comparison. 

However, the weights assigned can be subjective. In order to reduce subjectivity, the 

author identified the use of a general quality loss function proposed by Choi and 

Langford (2008) to calculate the significance of each factor objectively. The general loss 

function is based on Taguchi’s quality loss function (Taguchi 1990). 

a. Taguchi Quality Loss Function 

Taguchi (1990) proposed that quality in relation to cost and loss applies not only 

to the manufacturer during production but also to the consumer and society as a whole. 

Customers who received a poor product would develop negative reactions and eventually 

no longer consume the product. Such consumer behavior eventually causes loss to the 

manufacturers in the long term. In quantifying the relationship between cost and loss, 

Taguchi proposed quality loss functions for three characteristics, namely, nominal-the-

best, smaller-the-better, and larger-the-better. The nominal-the-best approach is used 

when there is an identified target point to achieve. The smaller-the-better and larger-the-

better approaches are used when trying to minimize and maximize the result respectively. 

Taguchi’s quality loss function is a useful tool for cost-benefit analysis, for 

example, to decide the amount of investment to improve a product that is already within 

specifications before it became no longer worthwhile. Taguchi’s quality loss function 

aims to minimize loss to the customer by improving quality and reducing performance 

variation of the product (Choi and Langford 2008). 

b. General Quality Loss Function 

Taguchi’s quality loss function applies mainly to manufacturing and production. 

In other phases of the system lifecycle, there is difficulty in applying Taguchi’s quality 
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loss function. Consequently, Choi and Langford (2008) felt the need to develop a quality 

loss function that is applicable for all acquisition phases (i.e., concept and technology 

development, system development and demonstration, production and deployment, 

sustainment and disposal) of weapon systems. Building upon Taguchi’s quality loss 

function, Choi and Langford (2008) developed a general quality loss function applicable 

to all systems using competing resources. The general quality loss function as defined by 

Choi and Langford (2008) is 

 
where 

Ln: Expected quality loss 

x: Response of quality 

Cs: proportionality constant 

m: target value 

n: Shape parameter for representing an acquisition phase of a weapon system (n > 

0)  

Application of the general quality loss function was demonstrated in a South 

Korean project to develop a plate that is applied to the skirt of a tank (Choi and Langford 

2008). Using the general quality loss function, the project team was able to derive the 

quality loss function for each stage, baseline cost, expected quality loss for each stage, 

and the amount of additional investment considered acceptable to the project stakeholder 

should there be a need to reduce the thickness of the plate. 

c. Pugh Matrix 

Although the preferred method would be the use of general loss function due to 

the increased objectivity, the lack of data available to the author for the creation of a 

model necessitates the use of other methods. In view of the lack of data for rationalization 

of weights assignment, the author opted for a relative comparison method in using the 
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Pugh Matrix (Pugh 1991). This method of assigning significance uses a “better- or worse-

off” comparison between factors. 

The following sub-sections will discuss the pertinent features in each of the three 

scenarios that result in the increased or decreased significance of factors at each 

associated levels. 

2. Assigning Response Based on Scenarios 

Prior to assigning response based on the scenarios, a baseline response is 

generated for basis of comparison. The baseline response is based on the ideal state 

where both noise factors are absent. For two-level signal factors, runs having the factor 

results in a binary “1” state whereas not having the factor results in a “0” state. The 

responses for three-level signal factors follow a similar approach. It is assumed that the 

benefit associated with each increasing factor level still linear at this stage. Hence, three-

level signal factors are assigned “0,” “1,” and “2” as baseline responses. 

With both noise factors absent, the range of detection is expected to be optimal. 

Having no blockages makes sensor(s) and weapon(s) ranges most important in a “see 

first, shoot first, kill first” heuristic for this scenario. The further the MAD system can 

detect and engage, the higher the survivability of the maneuver formation. 

The key advantage of being able to incorporate data from more intelligence 

sources is to have backup sensors when one or more sensors are ineffective (blocked). In 

this scenario, having additional intelligence sources may not be that useful since all the 

conditions are present for the sensor to operate optimally. 

Since there is no relief for cover and concealment, assuming the sensor is 

operating optimally with good range, the threat should be detected at a further distance. 

With more reaction time, the coverage angle of the weapon may be less significant as the 

crew would have sufficient time to slew the weapon system to the target in preparation 

for engagement. However, the lack of relief and foliage also means that the maneuver 

formation has to travel at the fastest speed possible in order to reduce time exposed to the 

threats. Therefore, platform speed during scan and engagement would be important in the 
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baseline scenario. During engagement, the platform is likely to move in a steady direction 

to facilitate engagement. This kind of movement prevents the MAD system from 

executing evasive movement. A short engagement time would allow the MAD system to 

resume evasive movement sooner and thus reduce exposure to the threat. 

As discussed previously, the adversary may opt for more ground assets to engage 

the maneuver formation due to the lack of any obvious advantage in deploying air assets. 

This strategy may result in increased significance of having protection against gunfire 

and tank munitions, and having redundancy for critical components for sensor and 

weapon. In the absence of difficult terrain, cross-country ability would not provide any 

extra advantage to the MAD system. Table 17 shows the baseline responses (under data 

label R) for the signal factors. 

 78 



Table 17.   Baseline Response for Signal Factors 

 
 

a. Scenario One: Open and Flat 

Scenario One only has the traveling surface noise factor present and is similar to 

the baseline condition in that there are no blockages. Since the traveling surface can be 

“soft,” having cross-country capability, that is, tracked vehicles, would be advantageous 

as tracks are able to gain more traction on “soft” traveling surfaces. The response for 

Scenario One is shown in Table 18. 
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Table 18.   Response for Signal Factors in Scenario One 

 
 

b. Scenario Two: Some Relief 

In this scenario both noise factors are present. The range of detection is expected 

to be less than optimal with limited ranges most of the time. The presence of blockages 

makes sensor(s) and weapon(s) ranges less important in this scenario as the system can 

only “shoot” that far provided it can “see” the threat. If the sensor range was blocked and 

unable to provide long-range detection but the weapon is able to have a clear line of 

attack, being able to incorporate data from more intelligence sources would be very 

useful. Other sensors may not be blocked and would be able to transmit the threat 

 80 



information to the MAD system for engagement. Even if there were blockages in the line 

of attack from the weapon to the threat, early warning would allow for more reaction time 

to engage the threat.  

Reduced detection ranges translate to shorter reaction time. Consequently, the 

coverage angle of the weapon may be more significant as the crew may no longer have 

sufficient time to slew the weapon system to the target in preparation for engagement. 

The presence of relief and foliage also means that the maneuver formation now has some 

form of cover from the threat. Therefore, platform speed during scan and engagement 

would be less important than in the absence of relief and foliage. During engagement, the 

platform would likely need to slow down or even stop to maintain a clear line of attack. 

This kind of movement prevents the MAD system from executing evasive movement or 

being under cover. A short engagement time would allow the MAD system to resume 

evasive movement sooner and thus reduce exposure to the threat. 

With the attack helicopters having an advantage in “pop-up” attacks, the 

adversary may opt for less ground assets to engage the maneuver formation. This strategy 

may result in reduced probability of being engaged by gunfire and tank munitions. 

Having redundancy for critical components for sensor and weapon may be less important 

than in the case of Scenario One. 

In this scenario, the surface that must be traversed is undulating. Having cross-

country capability would be advantageous when encountering difficult terrain. The 

response for Scenario Two is shown in Table 19. 
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Table 19.   Response for Signal Factors in Scenario Two 

 
 

c. Scenario Three: Urban Built-Up Area 

Scenario Three only has the blockage noise factor present. While the net effect is 

similar to Scenario Two in that the sensor and weapon may encounter blockages, the 

processes and mechanisms of blockage may differ. The blockages in Scenario Two were 

due to relief and foliage. In Scenario Three, the blockages are due to buildings, and the 

MAD system having to negotiate narrow roads. Such movement may result in 90-degree 

turns and significant change of field-of-view. The author opines that in this scenario, 

having sensor and weapon critical component redundancies, and protection against 
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gunfire and tank munitions is more important than in Scenario Two due to the increased 

chances of being surprised by the adversary forces especially when turning “blind 

corners.” In this scenario, the surface that must be traversed is easy terrain (paved roads). 

Therefore, cross-country ability would not provide any extra advantage to the MAD 

system. The response for Scenario Three is shown in Table 20. 

Table 20.   Response for Signal Factors in Scenario Three 
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F. CONDUCTING THE DOE 

With responses assigned, the DOE could now be conducted using JMP 11 Pro 

statistical software. The DOE in JMP 11 Pro requires responses in all combinations of the 

noise factors. For this thesis, two two-level noise factors were determined, hence a total 

of four combinations are possible. The responses of the signal factors for baseline 

condition and the three scenarios correspond to all possible combinations for the noise 

factors. In the baseline condition, both noise factors are absent. For Scenario One, only 

the traveling surface noise factor is present. The reverse is true in Scenario Three where 

only the blockage noise factor is present. In Scenario Two, both noise factors are present. 

Consequently, the responses for baseline and the three scenarios are input into JMP 11 

Pro as shown in Figure 29 via a screen capture.  

 
Figure 29.  Screen Capture of DOE Setup from JMP 11 Pro 
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This chapter illustrated the use of DOE for expeditious assessment of the various 

factors that may affect the design of the MAD system. Taguchi’s orthogonal array design 

was selected due to the ability to provide results comparable to a full factorial design 

while requiring significantly less experimental runs. In the building of scenarios, different 

operating environments representative of typical military missions were considered. 

These scenarios represent noise factors that could not be controlled by the designer or 

engineer but affected the performance of the MAD system. A DOE requires signal 

factors, noise factors and responses. In lieu of availability of combat data, response was 

assigned to each experimental run using a “better- or worse-off” comparison. The 

responses were then input into JMP 11 Pro statistical software for the conduct of DOE. 

The presentation and analysis of results are covered in Chapter V. 
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V. RESULTS AND ANALYSIS 

Chapter IV discussed the rationale of using a DOE for assessing the factors that 

may affect the design of the MAD system. The requisite components for a DOE comprise 

signal factors, noise factors and responses. The use of MOMs and MOPs as signal 

factors, building of scenarios representative of typical military missions to distill noise 

factors, and assigning of significance to each experimental runs as responses were 

diligently discussed. The setup for DOE was thus complete and executed using JMP Pro 

11 statistical analysis software. The results of the DOE are presented and discussed in 

this chapter. 

A. RESULTS 

JMP 11 Pro statistical analysis software using the least squares fitting technique 

generates the results of the DOE automatically. The least squares fitting technique is 

commonly used in linear regression (Weisstein 2015). Figure 30 shows the actual versus 

predicted plot for the signal-to-noise ratio. In statistics, the R2 coefficient is a measure of 

the closeness of fit between actual and predicted data points. R2 values range from zero to 

unity; unity represents a perfect fit. For the plot in Figure 30, the R2 value is 0.99, which 

means that the fit between actual and predicted data points is close. 

 
Figure 30.  Actual by Predicted Plot for Signal-to-Noise Ratio 
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JMP 11 Pro also generates the scaled estimates for each factor at each associated 

level. Ten two-level factors and three three-level factors result in 29 terms, as shown in 

Figure 31. Using a 95% confidence level, any t-value less than 0.05 is generally 

considered to be significant (marked with an asterisk in Figure 31). Most terms were 

significant, with the exception of having two intelligences sources, which had a t-value of 

0.6927. The top three significant terms were identified as short detection and engagement 

ranges followed by long detection range.  

 
Figure 31.  Scaled Estimates from JMP 11 Pro 
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B. ANALYSIS 

The factors included in the DOE were specifically selected in consideration of a 

MAD system. It is thus unsurprising to see that most of the terms are significant. The 

intent of the DOE is more to compare the comparative level of significance amongst the 

significant factors. The top three significant terms were identified as having short 

detection and engagement ranges followed by having long detection range. The author 

opines that the identification of these three terms as most significant is reasonable. It is 

critical for MAD systems to at minimum have short detection and engagement ranges in 

order to be functional. Long detection range can result in longer reaction times, which 

can in turn lead to better preparation for the incoming threat. With the additional amount 

of reaction time, better tactics can be deployed; for example, MAD systems can be better 

positioned to create a “kill box” for the incoming threat. 

Even without the use of combat data, there are parallels that can be drawn from 

the DOE results with real world trends. Following the detection and engagement ranges, 

the exposure time is the next most significant factor. The type of weapon system with the 

shortest exposure time is an FNF system. It is thus no surprise that FNF systems, most 

commonly in the form of infrared seeking missiles, are predominant amongst current 

existing MAD systems in the world.  

Another example is the factor of having all round coverage weapon system, i.e., 

vertical-launched weapon system. Based on the DOE results, this factor does not fall 

within the top ten significant factors. It would seem from an operator’s point of view that 

having a vertical-launched system would be advantageous over an oblique-launched 

weapon system as missiles can possibly be fired even before lock-on. However, a quick 

survey of existing mobile air defense systems reveals that weapon systems for MAD 

largely remain oblique-launched (e.g., the Stormer, Crotale (NG), SPYDER-Short Range, 

and Avenger). Recent air defense systems that have moved to vertical-launched modules 

(e.g., SPYDER-Medium Range, Aster 30 Surface-to-Air Medium Range 

Platform/Terrain, and S350 Vityaz) are mainly medium to long-ranged air defense 

systems of the HIMAD class, which may not be applicable to the capability needed in 

this thesis. It is imperative to note that the SPYDER short- and medium-range systems, 
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similar systems with fully interoperable missiles, have the short-range version remain 

oblique-launched while the medium-range version is vertical-launched (Rafael 2015). 

Therefore, while having a vertical-launched weapon system does offer the advantage of 

lock-on-after-launch, the contribution of a vertical-launched weapon system toward 

overall survivability of the maneuver formation may be of a lesser magnitude compared 

to factors with higher significance, such as detection and engagement ranges. In a real 

world acquisition scenario with constraints including budget and vehicle weight, having a 

vertical-launched system may not be the highest priority. 

After the exposure time factor, the following significant factors from the results of 

the DOE are related to protection against ground threats: the ability to withstand up to 30 

mm gunfire or one direct hit from 120 mm tank munitions, and having sensor and 

weapon critical component redundancy. This result illustrates the importance of 

protection for a MAD system against ground threats. The Avenger, currently the only 

MAD system in the United States, would probably not fare well in regard to these ground 

threat protection–related factors. Future program executive offices and program managers 

managing the acquisition of MAD systems should consider improving the survivability of 

the MAD system with incorporation of protection against ground threats and having 

redundant critical components for sensor and weapon. Redundancy may not necessarily 

be considered in the form of each MAD system as a unit, but in terms of the maneuver 

formation as an SOS. For example, if there are 10 MAD systems in the maneuver 

formation with each having one radar, there is no sensor redundancy if each MAD system 

is considered as a singular entity. Operating as a maneuver formation SOS, if the track 

information of the 10 radars is resolved into a common air picture, even if the radar of 

one MAD system is killed it would not affect the overall formation due to sensor 

redundancy in the remaining nine MAD systems. 

An interesting point to note from the DOE results is the number of intelligence 

sources. Based on the DOE results, having one intelligence source or more than two 

sources is significant. However, having only two intelligence sources is not significant. 

The results seem to indicate that with regard to the number of intelligence sources, one 

should choose between single and multiple intelligence sources.  
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C. APPLICATION 

JMP 11 Pro has a Prediction Profiler function that presents the significance of the 

factors graphically, as shown in Figure 32. The steepness of the predicted profile 

corresponds to the significance of the factor. Correspondingly, the profiles for detection 

engagement ranges and short and long detection ranges, which were identified as the top 

three significant factors, are steeper than any other factors. 

 
Figure 32.  Prediction Profiler for Mean and Signal-to-Noise Ratio 

In the DOD, it is often the case that the full capability to fulfill a need is first 

anticipated during project conceptualization. Toward the end of the design phase, cost-

benefit analysis is conducted to determine the optimized cost-benefit point for design 

selection. The result of the cost-benefit analysis can result in the program having to settle 

on a percentage of the full capability. 

There is a Desirability function in JMP 11 Pro that can aid the decision-making 

process in the above-mentioned situation by recommending the type of MAD system 

suitable for a specified desirability level. The values of desirability ranges from zero to 

unity. When all factors are set to the highest possible level, the value of the desirability 

factor is closest to unity. In Figure 33, the desirability factor is at about 0.76. At this 

desirability level, JMP 11 Pro automatically generates the optimized level for each factor. 

Hence, a MAD system having fast platform speed during scan and engagement, no sensor 

and weapon critical component redundancy, fast road and cross-country speed, oblique-

launched weapon system, no protection again 30 mm gunfire and 120 mm tank 

munitions, long detection and engagement ranges, and one intelligence source is expected 

to perform to a desirability level of about 76.3 percent of the full capability, in 
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comparison to a desirability level of about 81.6 percent of the full capability for two 

intelligence sources, and increasing to a desirability level of about 87.3 percent of the full 

capacity for three or more intelligence sources. The corresponding signal-to-noise ratio 

and mean responses are also automatically calculated as shown in Figure 33. 

 
Figure 33.  Prediction Profiler with Desirability Function 

Overall, the results of the DOE have shown reasonable representation of real 

world trends. If the DOE was conducted with combat data as responses, the result should 

be improved with greater precision and accuracy. The author believes that the results of 

the DOE show sufficient realism to be useful as a tool for the acquisition of a MAD 

system. 
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VI. CONCLUSION 

Acquisition of a weapon system is a complex and iterative task. This study 

adopted a systems engineering approach with the aim of developing an assessment 

framework for the acquisition of a MAD system. The systems engineering process is a 

systematic and holistic method of generating the required functions and components to 

implement the capability and operational activities needed by stakeholders. The 

decomposition methodology used for operational and functional analysis enables 

complex problems to be broken down into simpler and more manageable problems. In 

addition, the conduct of operational and functional analysis at an SOS level enabled 

better appreciation of complementary functions between the GCVs and MAD systems in 

the maneuver formation. The use of model-based systems engineering provides an 

interlinked framework that allows for iterative work while maintaining track of follow-on 

changes. Subsequently, MOMs and MOPs were defined to ensure overall likelihood of 

mission success and functional performances respectively. 

The use of the DOE expedited the assessment process with regard to factors that 

may affect the design of the MAD system. Input factors to the DOE were mainly MOPs 

generated from the system engineering process. In addition, factors related to combat 

survivability were included. While combat survivability (encompassing the 12 concepts 

for reducing susceptibility and vulnerability) is well established for aircraft platforms, 

combat survivability design consideration for land platforms currently utilizes a few 

select susceptibility or vulnerability reduction concepts. The inclusion of combat 

survivability–related factors as inputs to the DOE ensures combat survivability is 

considered early in the design phase, thus preventing the need to conduct costly changes 

to incorporate combat survivability enhancements later on in the system lifecycle. As part 

of the DOE setup, the scenarios generated to represent typical military missions allowed 

the distillation of noise factors, that although uncontrollable affect the performance of the 

MAD system. The presence of blockages (e.g., relief and foliage) and traveling surface 

were the two noise factors determined from the scenarios. The consideration of noise 
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factors in the DOE allowed for a more representative assessment of the performance of 

MAD systems in the operating environment. 

The DOE results are indicative of real world trends. Based on the DOE results, 

having short detection and engagement ranges is most critical for MAD systems. In 

addition, long detection range can enhance performance. The exposure time was also 

identified to be a high significance factor. This result is supported by real world trends in 

that most existing MAD systems have an FNF system to minimize exposure time. 

A. SUMMARY 

A systematic and interlinked assessment framework for the acquisition of a MAD 

system has been developed. The use of model-based systems engineering tool and 

statistical analysis software is envisaged to expedite the assessment process significantly. 

Further validation of the framework with the use of combat data would enhance the 

accuracy and precision of the assessment results. 

B. FURTHER RESEARCH 

In Chapter IV, the initial selection of using the general loss function proposed by 

Choi and Langford (2008) was aimed at reducing subjectivity and increasing objectivity 

when assigning responses. However, the lack of data necessitated a different approach. 

Improvement in this area is considered key to the current framework. Future researchers 

could build a model using the general loss function and validate it with combat data. The 

validated model could then be used to calculate the responses objectively for each DOE 

run. Consequently, the results of DOE would be more accurate and precise. 
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